1,003 research outputs found

    A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2

    Full text link
    We have performed a search for halo white dwarfs as high proper motion objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify 24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper motion objects are identified as strong white dwarf candidates on the basis of their position in a reduced proper motion diagram. We create a model of the Milky Way thin disk, thick disk and stellar halo and find that this sample of white dwarfs is clearly an excess above the < 2 detections expected from these known stellar populations. The origin of the excess signal is less clear. Possibly, the excess cannot be explained without invoking a fourth galactic component: a white dwarf dark halo. We present a statistical separation of our sample into the four components and estimate the corresponding local white dwarf densities using only the directly observable variables, V, V-I, and mu. For all Galactic models explored, our sample separates into about 3 disk white dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin and thick disk and the stellar and dark halo, and the subsequent calculation of the local densities are sensitive to the input parameters of our model for each Galactic component. Using the lowest mean mass model for the dark halo we find a 7% white dwarf halo and six times the canonical value for the thin disk white dwarf density (at marginal statistical significance), but possible systematic errors due to uncertainty in the model parameters likely dominate these statistical error bars. The white dwarf halo can be reduced to around 1.5% of the halo dark matter by changing the initial mass function slightly. The local thin disk white dwarf density in our solution can be made consistent with the canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion expande

    Possible Cosmological Implications of the Quark-Hadron Phase Transition

    Get PDF
    We study the quark-hadron phase transition within an effective model of QCD, and find that in a reasonable range of the main parameters of the model, bodies with quark content between 10210^{-2} and 10 solar masses can have been formed in the early universe. In addition, we show that a significant amount of entropy is released during the transition. This may imply the existence of a higher baryon number density than what is usually expected at temperatures above the QCD scale. The cosmological QCD transition may then provide a natural way for decreasing the high baryon asymmetry created by an Affleck-Dine like mechanism down to the value required by primordial nucleosynthesis.Comment: 19 pages, LaTeX, 5 Postscript figures included. Submitted to Journal of Physics

    The OGLE View of Microlensing towards the Magellanic Clouds. II. OGLE-II SMC data

    Full text link
    The primary goal of this paper is to provide the evidence that can either prove or falsify the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects existed, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on the data from the second phase of the OGLE survey (1996-2000) towards the SMC. The data set we used is comprised of 2.1 million monitored sources distributed over an area of 2.4 square degrees. We found only one microlensing event candidate, however its poor quality light curve limited our discussion on the exact distance to the lensing object. Given a single event, taking the blending (crowding of stars) into account for the detection efficiency simulations, and deriving the HST-corrected number of monitored stars, the microlensing optical depth is tau=(1.55+-1.55)10e-7. This result is consistent with the expected SMC self-lensing signal, with no need of introducing dark matter microlenses. Rejecting the unconvincing event leads to the upper limit on the fraction of dark matter in the form of MACHOs to f<20 per cent for deflectors' masses around 0.4 Msun and f<11 per cent for masses between 0.003 and 0.2 Msun (95 per cent confidence limit). Our result indicates that the Milky Way's dark matter is unlikely to be clumpy and form compact objects in the sub-solar-mass range.Comment: Accepted for publication in MNRAS. Data in electronic form are available on the OGLE's website: http://ogle.astrouw.edu.pl

    Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation

    Get PDF
    We study the dynamics of first-order phase transition in the early Universe when it was 1050μs10-50 \mu s old with quarks and gluons condensing into hadrons. We look at how the Universe evolved through the phase transition in small as well as large super cooling scenario, specifically exploring the formation of quark nuggets and their possible survival. The nucleation of the hadron phase introduces new distance scales in the Universe, which we estimate along with the hadron fraction, temperature, nucleation time etc. It is of interest to explore whether there is a relic signature of this transition in the form of quark nuggets which might be identified with the recently observed dark objects in our galactic halo and account for the Dark Matter in the Universe at present.Comment: LaTeX file with four postscript figure

    A new clue to the transition mechanism between optical high and low states of the supersoft X-ray source RX J0513.9-6951, implied from the recurrent nova CI Aquilae 2000 outburst model

    Get PDF
    We have found a new clue to the transition mechanism between optical high/X-ray off and optical low/X-ray on states of the LMC supersoft X-ray source RX J0513.9-6951. A sharp ~1 mag drop is common to the CI Aql 2000 outburst. These drops are naturally attributed to cessation of optically thick winds on white dwarfs. A detailed light-curve analysis of CI Aql indicates that the size of a disk drastically shrinks when the wind stops. This causes ~1-2 mag drop in the optical light curve. In RX J0513.9-6951, the same mechanism reproduces sharp ~1 mag drop from optical high to low states. We predict this mechanism also works on the transition from low to high states. Interaction between the wind and the companion star attenuates the mass transfer and drives full cycles of low and high states.Comment: 9 pages including 5 figures, to appear in the Astrophysical Journa

    What accounts for ‘England’s green and pleasant land’? A panel data analysis of mental health and land cover types in rural England

    Get PDF
    This is the author’s version of a work that was accepted for publication in Landscape and Urban Planning. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at doi:10.1016/j.landurbplan.2015.05.008.Exposure to green space is associated with a variety of positive health states. Research to date has focused primarily on ‘generic’ green space in urban areas, where green space is relatively scarce and where it is dominated by playing fields and parks. The current research adds to our understanding with an examination of relationships between different types of green space and mental health in rural areas in England (approximate rural population = 4 million). The aggregate land cover classes of Land Cover Map 2007 were linked to rural residential areas (Lower-level Super Output Areas) and then linked to rural participants (n = 2020) in the 18-year longitudinal British Household Panel Survey. Random effects regression of mental health (as measured by GHQ12 scores) against land cover enabled effects to be simultaneously estimated from both mean between-individual differences and from within-individual differences over time. The nine natural land cover classes (Broadleaved woodland; Coniferous woodland; Arable; Improved grassland; Semi-natural grassland; Mountain, heath and bog; Saltwater; Freshwater; Coastal) were not significantly associated with differences in mental health between individuals. However, significant relationships were observed between some types of land cover and within-individual change in mental health amongst individuals who relocated during the 18 annual waves of the panel. These findings indicate the presence of important health related ecosystem services from different land cover types that have not previously been investigated and which help more effective spatial planning and land use management.Economic and Social Research CouncilNational Institute for Health Research Health Protection Research Unit (NIHR HPRU

    Optical Gravitational Lensing Experiment. OGLE-1999-BUL-19: The First Multi-Peak Parallax Event

    Get PDF
    We describe a highly unusual microlensing event, OGLE-1999-BUL-19, which exhibits multiple peaks in its light curve. The Einstein radius crossing time for this event is approximately one year, which is unusually long. We show that the motion of the Earth induces these multiple peaks in the light curve, since the relative transverse velocity of the lens projected into the observer plane is very small (v = 12.5 km/s). This is the lowest velocity so far published and we believe that this is the first multiple-peak parallax event ever observed. We also believe that this event may be exhibiting slight binary-source signatures in addition to these parallax-induced multiple peaks. With spectroscopic observations it is possible to test this `parallax plus binary-source' hypothesis and (if this hypothesis turns out to be correct) to simultaneously fit both models and obtain a measurement of the lens mass. Furthermore, spectroscopic observations could also supply information regarding the lens properties, possibly providing another avenue for determining the lens mass. We found that most of the I-band blending is probably caused by light from the lens or a binary companion to the source. However, in the V-band, there appears to be a second blended source 0.35" away from the lensed source. HST observations will be very useful for understanding the nature of the blends. We also suggest that a radial velocity survey of all parallax events will be very useful for further constraining the lensing kinematics and understanding the origins of these events and the excess of long events toward the bulge.Comment: 36 pages, 7 figures. Accepted for publication in MNRA

    The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data

    Full text link
    In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). This unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.Comment: Accepted for publication in MNRAS. On-line data available on OGLE website: http://ogle.astrouw.edu.p

    Symmetry structure and phase transitions

    Get PDF
    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.Comment: Plenary talk given at the 4th. ICPAQGP held at Jaipur, India from Nov 26-30, 2001.laTex 2e file with 8 ps figures and 12 page

    Large-amplitude isothermal fluctuations and high-density dark-matter clumps

    Full text link
    Large-amplitude isothermal fluctuations in the dark matter energy density, parameterized by \Phi\equiv\delta\rhodm/\rhodm, are studied within the framework of a spherical collapse model. For \Phi \ga 1, a fluctuation collapses in the radiation-dominated epoch and produces a dense dark-matter object. The final density of the virialized object is found to be \rho_F \approx 140\, \Phi^3 (\Phi+1) \rhoeq, where \rhoeq is the matter density at equal matter and radiation energy density. This expression is valid for the entire range of possible values of Φ\Phi, both for Φ1\Phi \gg 1 and Φ1\Phi \ll 1. Some astrophysical consequences of high-density dark-matter clumps are discussed.Comment: 15 pages plus 3 figures (included at the end as a uuencoded postscript file), LaTeX, FNAL--PUB--94/055--
    corecore