10 research outputs found

    Systematic and Phylogenetic Analysis of the Ole e 1 Pollen Protein Family Members in Plants

    Get PDF
    16 páginas, 2 figuras, 1 tabla.Support of the Spanish Ministry of Science and Innovation (ERDF-cofinanced project BFU2008-00629) and Andalusian Regional Government (ERDF-cofinanced Proyectos de Excelencia CVI5767 and AGR6274) is gratefully acknowledged.Peer reviewe

    First draft genome assembly of the Argane tree (Argania spinosa) [version 2; peer review: 2 approved]

    Get PDF
    BACKGROUND : The Argane tree (Argania spinosa L. Skeels) is an endemic tree of mid-western Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. METHODS : Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. RESULTS : In total, 144 Gb Illumina HiSeq reads and 7.6 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. CONCLUSION : The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological.DATA AVAILABILITY: All of the A. spinosa datasets can be retrieved under BioProject accession number PRJNA294096: http://identifiers.org/ bioproject:PRJNA294096. The raw reads are available at NCBI Sequence Reads Archive under accession number SRP077839: http://identifiers.org/insdc.sra:SRP077839. The complete genome sequence assembly project has been deposited at GenBank under accession number QLOD00000000: http://identifiers. org/ncbigi/GI:1408199612. Data can also be retrieved via the International Argane Genome Consortium (IAGC) website: http://www.arganome.org.https://f1000research.compm2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Nanovesicles Are Secreted during Pollen Germination and Pollen Tube Growth: A Possible Role in Fertilization

    Get PDF
    Depto. de Bioquímica y Biología MolecularFac. de Ciencias QuímicasTRUEMinisterio de Ciencia e Innovación (Spain)Instituto de Salud Carlos III (Spain)pu

    Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean

    Get PDF
    The common bean has received attention as a model plant for legume studies, but little information is available about the morphology of its pods and the relation of this morphology to the loss of seed dispersal and/or the pod string, which are key agronomic traits of legume domestication. Dehiscence is related to the pod morphology and anatomy of pod tissues because of the weakening of the dorsal and ventral dehiscence zones and the tensions of the pod walls. These tensions are produced by the differential mechanical properties of lignified and non-lignified tissues and changes in turgor associated with fruit maturation. In this research, we histologically studied the dehiscence zone of the ventral and dorsal sutures of the pod in two contrasting genotypes for the dehiscence and string, by comparing different histochemical methods with autofluorescence. We found that the secondary cell wall modifications of the ventral suture of the pod were clearly different between the dehiscence-susceptible and stringy PHA1037 and the dehiscence-resistant and stringless PHA0595 genotypes. The susceptible genotype had cells of bundle caps arranged in a more easily breakable bowtie knot shape. The resistant genotype had a larger vascular bundle area and larger fibre cap cells (FCCs), and due to their thickness, the external valve margin cells were significantly stronger than those from PHA1037. Our findings suggest that the FCC area, and the cell arrangement in the bundle cap, might be partial structures involved in the pod dehiscence of the common bean. The autofluorescence pattern at the ventral suture allowed us to quickly identify the dehiscent phenotype and gain a better understanding of cell wall tissue modifications that took place along the bean’s evolution, which had an impact on crop improvement. We report a simple autofluorescence protocol to reliably identify secondary cell wall organization and its relationship to the dehiscence and string in the common bean

    Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: a randomized double-blind controlled trial

    Get PDF
    A regular consumption of virgin olive oil (VOO) is associated with a reduced risk of cardiovascular disease. We aimed to assess whether the raw intake of an optimized VOO (OVOO, 490 ppm of phenolic compounds and 86 ppm of triterpenes), and a functional olive oil (FOO, 487 ppm of phenolic compounds and enriched with 389 ppm of triterpenes) supplementation (30 mL per day) during three weeks would provide additional health benefits to those produced by a standard VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes) on oxidative and inflammatory biomarkers. Fifty-one healthy adults participated in a randomized, crossover, and controlled study. Urinary 8-hidroxy-2'-deoxyguanosine, plasma interleukin-8 (IL-8), and tumor necrosis factor α (TNF- α) concentrations were lower after the intervention with the FOO than after the OVOO (p = 0.033, p = 0.011 and p = 0.020, respectively). In addition, IL-8 was lower after the intervention with FOO than after VOO intervention (p = 0.002). This study provides a first level of evidence on the in vivo health benefits of olive oil triterpenes (oleanolic and maslinic acids) in healthy humans, decreasing DNA oxidation and plasma inflammatory biomarkers. The trial was registered in ClinicalTrials.gov ID: NCT02520739

    Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: a randomized double-blind controlled trial

    No full text
    A regular consumption of virgin olive oil (VOO) is associated with a reduced risk of cardiovascular disease. We aimed to assess whether the raw intake of an optimized VOO (OVOO, 490 ppm of phenolic compounds and 86 ppm of triterpenes), and a functional olive oil (FOO, 487 ppm of phenolic compounds and enriched with 389 ppm of triterpenes) supplementation (30 mL per day) during three weeks would provide additional health benefits to those produced by a standard VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes) on oxidative and inflammatory biomarkers. Fifty-one healthy adults participated in a randomized, crossover, and controlled study. Urinary 8-hidroxy-2'-deoxyguanosine, plasma interleukin-8 (IL-8), and tumor necrosis factor α (TNF- α) concentrations were lower after the intervention with the FOO than after the OVOO (p = 0.033, p = 0.011 and p = 0.020, respectively). In addition, IL-8 was lower after the intervention with FOO than after VOO intervention (p = 0.002). This study provides a first level of evidence on the in vivo health benefits of olive oil triterpenes (oleanolic and maslinic acids) in healthy humans, decreasing DNA oxidation and plasma inflammatory biomarkers. The trial was registered in ClinicalTrials.gov ID: NCT02520739

    Effects of virgin olive oils differing in their bioactive compound contents on metabolic syndrome and endothelial functional risk biomarkers in healthy adults: a randomized double-blind controlled trial

    Get PDF
    The aim of this study was to evaluate the effect of virgin olive oils (VOOs) enriched with phenolic compounds and triterpenes on metabolic syndrome and endothelial function biomarkers in healthy adults. The trial was a three-week randomized, crossover, controlled, double-blind, intervention study involving 58 subjects supplemented with a daily dose (30 mL) of three oils: (1) a VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes); (2) an optimized VOO (OVOO) (490 ppm of phenolic compounds and 86 ppm of triterpenes); and (3) a functional olive oil (FOO) high in phenolic compounds (487 ppm) and enriched with triterpenes (389 ppm). Metabolic syndrome and endothelial function biomarkers were determined in vivo and ex vivo. Plasma high density lipoprotein cholesterol (HDLc) increased after the OVOO intake. Plasma endothelin-1 levels decreased after the intake of the three olive oils, and in blood cell cultures challenged. Daily intake of VOO enriched in phenolic compounds improved plasma HDLc, although no differences were found at the end of the three interventions, while VOO with at least 124 ppm of phenolic compounds, regardless of the triterpenes content improved the systemic endothelin-1 levels in vivo and ex vivo. No effect of triterpenes was observed after three weeks of interventions. Results need to be confirmed in subjects with metabolic syndrome and impaired endothelial function (Clinical Trials number NCT02520739)

    Effects of virgin olive oils differing in their bioactive compound contents on metabolic syndrome and endothelial functional risk biomarkers in healthy adults: a randomized double-blind controlled trial

    No full text
    The aim of this study was to evaluate the effect of virgin olive oils (VOOs) enriched with phenolic compounds and triterpenes on metabolic syndrome and endothelial function biomarkers in healthy adults. The trial was a three-week randomized, crossover, controlled, double-blind, intervention study involving 58 subjects supplemented with a daily dose (30 mL) of three oils: (1) a VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes); (2) an optimized VOO (OVOO) (490 ppm of phenolic compounds and 86 ppm of triterpenes); and (3) a functional olive oil (FOO) high in phenolic compounds (487 ppm) and enriched with triterpenes (389 ppm). Metabolic syndrome and endothelial function biomarkers were determined in vivo and ex vivo. Plasma high density lipoprotein cholesterol (HDLc) increased after the OVOO intake. Plasma endothelin-1 levels decreased after the intake of the three olive oils, and in blood cell cultures challenged. Daily intake of VOO enriched in phenolic compounds improved plasma HDLc, although no differences were found at the end of the three interventions, while VOO with at least 124 ppm of phenolic compounds, regardless of the triterpenes content improved the systemic endothelin-1 levels in vivo and ex vivo. No effect of triterpenes was observed after three weeks of interventions. Results need to be confirmed in subjects with metabolic syndrome and impaired endothelial function (Clinical Trials number NCT02520739)

    First draft genome assembly of the Argane tree (Argania spinosa)

    No full text
    BACKGROUND : The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. METHODS : Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. RESULTS : In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. CONCLUSION : The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes.This work was supported by the Iridian Genome Foundation (MD, USA). H.G. is supported by a Grant from the NIH (MD, USA) for H3ABioNet/H3Africa (grant numbers U41HG006941 and U24 HG006941). O.B. and B.C. are Fulbright JSD (USA) grant recipients. This work also benefited from support of Midterm Research Program of INRA-Morocco through the use of its bioinformatics platform.https://f1000research.comam2019Genetic

    The NUTRAOLEOUM Study, a randomized controlled trial, for achieving nutritional added value for olive oils

    Get PDF
    Background: Virgin olive oil, a recognized healthy food, cannot be consumed in great quantities. We aim to assess in humans whether an optimized virgin olive oil with high phenolic content (OVOO, 429 mg/Kg) and a functional one (FOO), both rich in phenolic compounds (429 mg/Kg) and triterpenic acids (389 mg/kg), could provide health benefits additional to those supplied a by a standard virgin olive oil (VOO). Methods/design: A randomized, double-blind, crossover, controlled study will be conducted. Healthy volunteers (aged 20 to 50) will be randomized into one of three groups of daily raw olive oil consumption: VOO, OVOO, and FOO (30 mL/d). Olive oils will be administered over 3-week periods preceded by 2-week washout ones. The main outcomes will be markers of lipid and DNA oxidation, inflammation, and vascular damage. A bioavailability and dose-response study will be nested within this sustained- consumption one. It will be made up of 18 volunteers and be performed at two stages after a single dose of each olive oil. Endothelial function and nitric oxide will be assessed at baseline and at 4 h and 6 h after olive oil single dose ingestion. Discussion: For the first time the NUTRAOLEUM Study will provide first level evidence on the health benefits in vivo in humans of olive oil triterpenes (oleanolic and maslinic acid) in addition to their bioavailability and disposition
    corecore