415 research outputs found
An Explicit SU(12) Family and Flavor Unification Model
An explicit SUSY SU(12) unification model with three light chiral families is
presented which avoids any external flavor symmetries. The hierarchy of quark
and lepton masses and mixings is explained by higher dimensional Yukawa
interactions involving Higgs bosons containing SU(5) singlet fields with VEVs
appearing at or below the SUSY GUT scale of 2 \times 10^{16} GeV, approximately
50 times smaller than the SU(12) unification scale. The model has been found to
be in good agreement with the observed quark and lepton masses and mixings,
with nearly all prefactors of O(1) in the four Dirac and one Majorana fermion
mass matrices.Comment: 7 pages, in proceedings of the CETUP*2012 Workshop, Lead, SD, 10 July
- 1 August 201
An explicit SU(12) family and flavor unification model with natural fermion masses and mixings
We present an SU(12) unification model with three light chiral families,
avoiding any external flavor symmetries. The hierarchy of quark and lepton
masses and mixings is explained by higher dimensional Yukawa interactions
involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50
times smaller than the SU(12) unification scale. The presented model has been
analyzed in detail and found to be in very good agreement with the observed
quark and lepton masses and mixings.Comment: 11 pages, 4 table
Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration
Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources
Combined effects of heat waves and droughts on avian communities across the conterminous United States
Increasing surface temperatures and climatic variability associated with global climate change are expected to produce more frequent and intense heat waves and droughts in many parts of the world. Our goal was to elucidate the fundamental, but poorly understood, effects of these extreme weather events on avian communities across the conterminous United States. Specifically, we explored: (1) the effects of timing and duration of heat and drought events, (2) the effects of jointly occurring drought and heat waves relative to these events occurring in isolation, and (3) how effects vary among functional groups related to nest location and migratory habit, and among ecoregions with differing precipitation and temperature regimes. Using data from remote sensing, meteorological stations, and the North American Breeding Bird Survey, we used mixed effects models to quantify responses of overall and functional group abundance to heat waves and droughts (occurring alone or in concert) at two key periods in the annual cycle of birds: breeding and post-fledging. We also compared responses among species with different migratory and nesting characteristics, and among 17 ecoregions of the conterminous United States. We found large changes in avian abundances related to 100-year extreme weather events occurring in both breeding and post-fledging periods, but little support for an interaction among time periods. We also found that jointly-, rather than individually-occurring heat waves and droughts were both more common and more predictive of abundance changes. Declining abundance was the only significant response to post-fledging events, while responses to breeding period events were larger but could be positive or negative. Negative responses were especially frequent in the western U.S., and among ground-nesting birds and Neotropical migrants, with the largest single-season declines (36%) occurring among ground-nesting birds in the desert Southwest. These results indicate the importance of functional traits, timing, and geography in determining avian responses to weather extremes. Because dispersal to other regions appears to be an important avian response, it may be essential to maintain habitat refugia in a more climatically variable future
Effects of drought on avian community structure
Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioral traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigor or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness based metrics by abundance and species richness of the avian community overall, and of four behavioral guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future
Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women.
Characterization of abdominal and intra-abdominal fat requires imaging, and thus is not feasible in large epidemiologic studies.We investigated whether biomarkers may complement anthropometry (body mass index [BMI], waist circumference [WC], and waist-hip ratio [WHR]) in predicting the size of the body fat compartments by analyzing blood biomarkers, including adipocytokines, insulin resistance markers, sex steroid hormones, lipids, liver enzymes and gastro-neuropeptides.Fasting levels of 58 blood markers were analyzed in 60 healthy, Caucasian or Japanese American postmenopausal women who underwent anthropometric measurements, dual energy X-ray absorptiometry (DXA), and abdominal magnetic resonance imaging. Total, abdominal, visceral and hepatic adiposity were predicted based on anthropometry and the biomarkers using Random Forest models.Total body fat was well predicted by anthropometry alone (R(2) = 0.85), by the 5 best predictors from the biomarker model alone (leptin, leptin-adiponectin ratio [LAR], free estradiol, plasminogen activator inhibitor-1 [PAI1], alanine transaminase [ALT]; R(2) = 0.69), or by combining these 5 biomarkers with anthropometry (R(2) = 0.91). Abdominal adiposity (DXA trunk-to-periphery fat ratio) was better predicted by combining the two types of predictors (R(2) = 0.58) than by anthropometry alone (R(2) = 0.53) or the 5 best biomarkers alone (25(OH)-vitamin D(3), insulin-like growth factor binding protein-1 [IGFBP1], uric acid, soluble leptin receptor [sLEPR], Coenzyme Q10; R(2) = 0.35). Similarly, visceral fat was slightly better predicted by combining the predictors (R(2) = 0.68) than by anthropometry alone (R(2) = 0.65) or the 5 best biomarker predictors alone (leptin, C-reactive protein [CRP], LAR, lycopene, vitamin D(3); R(2) = 0.58). Percent liver fat was predicted better by the 5 best biomarker predictors (insulin, sex hormone binding globulin [SHBG], LAR, alpha-tocopherol, PAI1; R(2) = 0.42) or by combining the predictors (R(2) = 0.44) than by anthropometry alone (R(2) = 0.29).The predictive ability of anthropometry for body fat distribution may be enhanced by measuring a small number of biomarkers. Studies to replicate these data in men and other ethnic groups are warranted
Laser-Plasma Interactions Enabled by Emerging Technologies
An overview from the past and an outlook for the future of fundamental
laser-plasma interactions research enabled by emerging laser systems
- …