2,037 research outputs found

    Boosting Innovation for the Development of Smart-Service Factories of the Future: The Cases of the Federal State of Vorarlberg and its Neighbouring Regions

    Get PDF
    Factory of the Future is an initiative of the European Commission. It is highly narrative and describes the transformation of “ordinary” manufacturing operations and structures to fully-integrated cyber-physical manufacturing systems. Basing on case study research performed in the greater area of Vorarlberg, this article aims to explore how Small and Medium Enterprises (SMEs) in the field of manufacturing can evolve to smart-service Factories of the Future. It takes a mixed-methods approach with quantitative research (questionnaire) and qualitative case study interviews and provides findings about three main topics in service system engineering: “transformation of an operational need into a description of system performance parameters”, “integration of related technical parameters and assurance of compatibility of all physical, functional and program interfaces” and “integration of reliability, maintainability, safety, survivability, human and other such factors”. As it turns out, increased servitization measures, service management, service performance and service quality by development of service-oriented architectures (SOA) are key to evolve to a smart-service Factory of the Future

    Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb

    Full text link
    A range of flavour physics observables show tensions with their corresponding Standard Model expectations: measurements of leptonic flavour-changing neutral current processes and ratios of semi-leptonic branching fractions involving different generations of leptons show deviations of the order of four standard deviations. If confirmed, either would be an intriguing sign of new physics. In this manuscript, we analyse the current experimental situation of such processes and for the first time estimate the combined impact of the future datasets of the Belle II and LHCb experiments on the present tensions with the Standard Model expectations by performing scans of the new physics contribution to the Wilson coefficients. In addition, the present day and future sensitivity of tree-level CKM parameters, which offer orthogonal tests of the Standard Model, are explored. Three benchmark points in time are chosen for a direct comparison of the estimated sensitivity between the experiments. A high complementarity between the future sensitivity achieved by the Belle II and LHCb experiments is observed due to their relative strengths and weaknesses. We estimate that all of the anomalies considered here will be either confirmed or ruled out by both experiments independently with very high significance by the end of data-taking at Belle II and the LHCb upgrade

    Combined STM/AFM with functionalized tips applied to individual molecules: Chemical reactions, geometric structure and charge distribution

    Get PDF
    Scanning probe microscopy (SPM) methods allow for investigations of the atomistic world in real space. While scanning tunneling microscopy (STM) is sensitive to the electronic structure of the sample, its geometry can be explored by means of atomic force microscopy (AFM). Suitable functionalization of the AFM tip enables resolving the chemical structure of individual molecules at low temperatures in ultrahigh vacuum. Combining STM and AFM detection schemes in one setup facilitates simultaneous examination of the electronic and the geometric structure of single (molecular) adsorbates. This work employs SPM with functionalized tips on individual molecules in three topics: The capability of structure determination is widened to non-planar and strongly deformed molecules. The required information is deduced from either full three-dimensional data sets or from images along the adsorbed molecule’s symmetry planes that are perpendicular to the sample surface. On-surface chemical reactions are studied in great detail. For two exemplary cases, we investigate the reaction pathway of a thermally activated planarization reaction, and we examine the interplay of electronic and geometric structure in the tip-induced formation of a metalorganic complex. Finally, we use AFM to image the charge distribution in individual metal-organic molecules with polar bonds. Introducing a novel spectroscopy technique we resolve charge contrast along individual polar bonds

    Dynamic Procedure for Filtered Gyrokinetic Simulations

    Full text link
    Large Eddy Simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the GENE code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved Direct Numerical Simulations (DNS). Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in Ion Temperature Gradient (ITG) driven turbulence. Moreover, the degree of anisotropy of the problem, that can vary with parameters, can be adapted dynamically by the method that shows Gyrokinetic Large Eddy Simulation (GyroLES) to be a serious candidate to reduce numerical cost of gyrokinetic solvers.Comment: 10 pages, 10 figures, submitted to Physics of Plasma

    Revisiting the Expected Cost of Solving uSVP and Applications to LWE

    Get PDF
    Abstract: Reducing the Learning with Errors problem (LWE) to the Unique-SVP problem and then applying lattice reduction is a commonly relied-upon strategy for estimating the cost of solving LWE-based constructions. In the literature, two different conditions are formulated under which this strategy is successful. One, widely used, going back to Gama & Nguyen\u27s work on predicting lattice reduction (Eurocrypt 2008) and the other recently outlined by Alkim et al. (USENIX 2016). Since these two estimates predict significantly different costs for solving LWE parameter sets from the literature, we revisit the Unique-SVP strategy. We present empirical evidence from lattice-reduction experiments exhibiting a behaviour in line with the latter estimate. However, we also observe that in some situations lattice-reduction behaves somewhat better than expected from Alkim et al.\u27s work and explain this behaviour under standard assumptions. Finally, we show that the security estimates of some LWE-based constructions from the literature need to be revised and give refined expected solving costs

    Investigation of the critical heat flux in a rod bundle configuration under low pressure conditions

    Get PDF
    Diverse boiling phenomena occur during the operation of light-water reactors. Their understanding is necessary to guarantee a safe service and to avoid unstable operating modes. For example, the comportment of the coolant could either be subcooled boiling during normal operation or even critical boiling during the occurrence of a disturbance. Besides, boiling effects also appear on the secondary loop of the steam generator. The boiling process allows significantly higher heat transfer rates compared to the single-phase convection. But this heat transport can be suddenly decreased when the limit of the critical heat flux (CHF) is reached. The occurrence of the boiling crisis leads generally to severe damage of the facility components and has to be avoided during reactor operation. Until today, there is no reliable method predicting this phenomenon based on universally valid correlations. A substantial benefit for the reactor safety research would be a prediction method which is based on the solution of the transport equations for the two-phase flow of water and steam. There exist many correlations based on observations in experiments or theoretical reflections which try to explain the occurrence and the development of the critical heat flux. Unfortunately, they cannot be combined to one complete model as they are counter-predicting effects or are set up on different physical effects. For example, the ‘Near Wall Bubble Crowding Model’ [Kandlikar, S. G., 2011] postulates the decrease of the liquid flow to the wall due to turbulence with increasing heat flux as bubbles will concentrate near the wall. Whereas the ‘Interfacial Lift-Off Model’ [Galloway, J., Mudawar, I., 1993] predicts pseudo-periodic ‘wetting-fronts’ which cause the agglomeration of steam leading to the CHF as these zones lift off from the wall. Using the COSMOS-L test facility, IKET at KIT tries to contribute to analyzing the different existing theories and to examine specific phenomena like flow pattern or void distribution for flow boiling

    The role of the cortical cytoskeleton

    Get PDF
    We generated Dictyostelium double mutants lacking the two F-actin crosslinking proteins alpha-actinin and gelation factor by inactivating the corresponding genes via homologous recombination. Here we investigated the consequences of these deficiencies both at the single cell level and at the multicellular stage. We found that loss of both proteins severely affected growth of the mutant cells in shaking suspension, and led to a reduction of cell size from 12 microns in wild-type cells to 9 microns in mutant cells. Moreover the cells did not exhibit the typical polarized morphology of aggregating Dictyostelium cells but had a more rounded cell shape, and also exhibited an increased sensitivity towards osmotic shock and a reduced rate of phagocytosis. Development was heavily impaired and never resulted in the formation of fruiting bodies. Expression of developmentally regulated genes and the final developmental stages that were reached varied, however, with the substrata on which the cells were deposited. On phosphate buffered agar plates the cells were able to form tight aggregates and mounds and to express prespore and prestalk cell specific genes. Under these conditions the cells could perform chemotactic signalling and cell behavior was normal at the onset of multicellular development as revealed by time-lapse video microscopy. Double mutant cells were motile but speed was reduced by approximately 30% as compared to wild type. These changes were reversed by expressing the gelation factor in the mutant cells. We conclude that the actin assemblies that are formed and/or stabilized by both F-actin crosslinking proteins have a protective function during osmotic stress and are essential for proper cell shape and motility

    The Basso-Dixon Formula and Calabi-Yau Geometry

    Full text link
    We analyse the family of Calabi-Yau varieties attached to four-point fishnet integrals in two dimensions. We find that the Picard-Fuchs operators for fishnet integrals are exterior powers of the Picard-Fuchs operators for ladder integrals. This implies that the periods of the Calabi-Yau varieties for fishnet integrals can be written as determinants of periods for ladder integrals. The representation theory of the geometric monodromy group plays an important role in this context. We then show how the determinant form of the periods immediately leads to the well-known Basso-Dixon formula for four-point fishnet integrals in two dimensions. Notably, the relation to Calabi-Yau geometry implies that the volume is also expressible via a determinant formula of Basso-Dixon type. Finally, we show how the fishnet integrals can be written in terms of iterated integrals naturally attached to the Calabi-Yau varieties.Comment: 42 page
    corecore