6 research outputs found

    Adiciones y correcciones a la orquidoflora valenciana, VI

    Get PDF
    Se aportan datos sobre algunos táxones poco abundantes en la Comunidad Valenciana; a destacar la presencia de Barlia robertiana en Monòver, Himantoglossum hircinum en Bocairent, Orchis fragrans en el Parc Natural de la Serra de Mariola y Orchis italica en Castellonet de la Conquesta.It is shown some data about rare taxa at the Valencian Community, specially about Barlia robertiana in Monòver, Himantoglossum hircinum in Bocairent, Orchis fragrans in the Natural Park Serra de Mariola and Orchis italica in Castellonet de la Conquesta

    Adiciones y correcciones a la orquidoflora valenciana, VII

    Get PDF
    Se aportan datos sobre algunos táxones de Orchidaceae que resultan escasos en la Comunidad Valenciana o en determinadas de sus comarcas; a destacar la presencia de Ophrys santonica y O. × pseudospeculum en Alicante.It is shown some data about rare taxa of Orchidaceae at the Valencian Community (E Spain) or expansions of area to new shires; to emphasize the presence of Ophrys santonica and O. × pseudospeculum in Alicante

    In vivo measurement of pH and CO2 levels in the uterus of sows through the estrous cycle and after insemination

    No full text
    Abstract The pH–CO2–HCO3 − system is a ubiquitous biological regulator with important functional implications for reproduction. Knowledge of the physiological values of its components is relevant for reproductive biology and the optimization of Assisted Reproductive Technologies (ARTs). However, in situ measurements of these parameters in the uterus are scarce or null. This study describes a non-invasive method for in situ time-lapse recording of pH and CO2 within the uterus of non-anesthetized sows. Animals were at three different reproductive conditions, estrous with no insemination and two hours after insemination, and diestrous. From pH and CO2 data, HCO3 − concentration was estimated. The non-invasive approach to the porcine uterus with novel optical probes allowed the obtaining of in situ physiological values of pH, CO2, and HCO3 −. Variable oscillatory patterns of pH, CO2 and HCO3 − were found independently of the estrous condition. Insemination did not immediately change the levels of uterine pH, CO2 (%) and HCO3 − concentration, but all the values were affected by the estrous cycle decreasing significantly at diestrous condition. This study contributes to a better understanding of the in vivo regulation of the pH-CO2-HCO3 − system in the uterus and may help to optimize the protocols of sperm treatment for in vitro fertilization

    Polycythemia vera and essential thrombocythemia patients exhibit unique serum metabolic profiles compared to healthy individuals and secondary thrombocytosis patients

    Get PDF
    Most common myeloproliferative neoplasms (MPNs) include polycythemia vera (PV) and essential thrombocythemia (ET). Accurate diagnosis of these disorders remains a clinical challenge due to the lack of specific clinical or molecular features in some patients enabling their discrimination. Metabolomics has been shown to be a powerful tool for the discrimination between different hematological diseases through the analysis of patients' serum metabolic profiles. In this pilot study, the potential of NMR-based metabolomics to characterize the serum metabolic profile of MPNs patients (PV, ET), as well as its comparison with the metabolic profile of healthy controls (HC) and secondary thrombocytosis (ST) patients, was assessed. The metabolic profile of PV and ET patients, compared with HC, exhibited higher levels of lysine and decreased levels of acetoacetic acid, glutamate, polyunsaturated fatty acids (PUFAs), scyllo-inositol and 3-hydroxyisobutyrate. Furthermore, ET patients, compared with HC and ST patients, were characterized by decreased levels of formate, N-acetyl signals from glycoproteins (NAC) and phenylalanine, while the serum profile of PV patients, compared with HC, showed increased concentrations of lactate, isoleucine, creatine and glucose, as well as lower levels of choline-containing metabolites. The overall analysis revealed significant metabolic alterations mainly associated with energy metabolism, the TCA cycle, along with amino acid and lipid metabolism. These results underscore the potential of metabolomics for identifying metabolic alterations in the serum of MPNs patients that could contribute to improving the clinical management of these diseases.This research was funding by the Ministerio de Economía y Competitividad (SAF2017-89229-R). Part of the equipment used in this work was co-funded by the Generalitat Valenciana and European Regional Development Fund (FEDER) funds (PO FEDER of Comunitat Valenciana 2014–2020)

    Polycythemia vera and essential thrombocythemia patients exhibit unique serum metabolic profiles compared to healthy individuals and secondary thrombocytosis patients

    No full text
    Simple Summary Current diagnosis of myeloproliferative neoplasms (MPNs), including polycythemia vera (PV) and essential thrombocythemia (ET), is controversial due to limitations associated with the lack of reproducibility, subjectivity and the presence of common somatic mutations in the driver genes. Metabolomics represents a powerful approach to identify altered metabolites that can differentiate between disease status at the time of diagnosis. The objective of this study was to characterize the serum metabolic profile of MPNs patients (PV and ET) and compare it with healthy controls (HC) and secondary thrombocytosis (ST) patients. The analysis revealed metabolites following similar trends between PV and ET patients, as well as unique significant differences in the serum metabolite levels of MNPs patients compared to HC and ST patients. These results could contribute to better differentiate patients with these diseases from HC and ST patients. Most common myeloproliferative neoplasms (MPNs) include polycythemia vera (PV) and essential thrombocythemia (ET). Accurate diagnosis of these disorders remains a clinical challenge due to the lack of specific clinical or molecular features in some patients enabling their discrimination. Metabolomics has been shown to be a powerful tool for the discrimination between different hematological diseases through the analysis of patients' serum metabolic profiles. In this pilot study, the potential of NMR-based metabolomics to characterize the serum metabolic profile of MPNs patients (PV, ET), as well as its comparison with the metabolic profile of healthy controls (HC) and secondary thrombocytosis (ST) patients, was assessed. The metabolic profile of PV and ET patients, compared with HC, exhibited higher levels of lysine and decreased levels of acetoacetic acid, glutamate, polyunsaturated fatty acids (PUFAs), scyllo-inositol and 3-hydroxyisobutyrate. Furthermore, ET patients, compared with HC and ST patients, were characterized by decreased levels of formate, N-acetyl signals from glycoproteins (NAC) and phenylalanine, while the serum profile of PV patients, compared with HC, showed increased concentrations of lactate, isoleucine, creatine and glucose, as well as lower levels of choline-containing metabolites. The overall analysis revealed significant metabolic alterations mainly associated with energy metabolism, the TCA cycle, along with amino acid and lipid metabolism. These results underscore the potential of metabolomics for identifying metabolic alterations in the serum of MPNs patients that could contribute to improving the clinical management of these diseases

    Polycythemia vera and essential thrombocythemia patients exhibit unique serum metabolic profiles compared to healthy individuals and secondary thrombocytosis patients

    Get PDF
    Simple Summary Current diagnosis of myeloproliferative neoplasms (MPNs), including polycythemia vera (PV) and essential thrombocythemia (ET), is controversial due to limitations associated with the lack of reproducibility, subjectivity and the presence of common somatic mutations in the driver genes. Metabolomics represents a powerful approach to identify altered metabolites that can differentiate between disease status at the time of diagnosis. The objective of this study was to characterize the serum metabolic profile of MPNs patients (PV and ET) and compare it with healthy controls (HC) and secondary thrombocytosis (ST) patients. The analysis revealed metabolites following similar trends between PV and ET patients, as well as unique significant differences in the serum metabolite levels of MNPs patients compared to HC and ST patients. These results could contribute to better differentiate patients with these diseases from HC and ST patients. Most common myeloproliferative neoplasms (MPNs) include polycythemia vera (PV) and essential thrombocythemia (ET). Accurate diagnosis of these disorders remains a clinical challenge due to the lack of specific clinical or molecular features in some patients enabling their discrimination. Metabolomics has been shown to be a powerful tool for the discrimination between different hematological diseases through the analysis of patients' serum metabolic profiles. In this pilot study, the potential of NMR-based metabolomics to characterize the serum metabolic profile of MPNs patients (PV, ET), as well as its comparison with the metabolic profile of healthy controls (HC) and secondary thrombocytosis (ST) patients, was assessed. The metabolic profile of PV and ET patients, compared with HC, exhibited higher levels of lysine and decreased levels of acetoacetic acid, glutamate, polyunsaturated fatty acids (PUFAs), scyllo-inositol and 3-hydroxyisobutyrate. Furthermore, ET patients, compared with HC and ST patients, were characterized by decreased levels of formate, N-acetyl signals from glycoproteins (NAC) and phenylalanine, while the serum profile of PV patients, compared with HC, showed increased concentrations of lactate, isoleucine, creatine and glucose, as well as lower levels of choline-containing metabolites. The overall analysis revealed significant metabolic alterations mainly associated with energy metabolism, the TCA cycle, along with amino acid and lipid metabolism. These results underscore the potential of metabolomics for identifying metabolic alterations in the serum of MPNs patients that could contribute to improving the clinical management of these diseases
    corecore