284 research outputs found
Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function
Phenotypic modulation of smooth muscle cells (SMCs) plays a key role in vascular disease, including atherosclerosis. Several transcription factors have been suggested to regulate phenotypic modulation of SMCs but the decisive mechanisms remain unknown. Recent reports suggest that specific microRNAs (miRNAs) are involved in SMC differentiation and vascular disease but the global role of miRNAs in postnatal vascular SMC has not been elucidated. Thus, the objective of this study was to identify the role of Dicer-dependent miRNAs for blood pressure regulation and vascular SMC contractile function and differentiation in vivo. Tamoxifen-inducible and SMC specific deletion of Dicer was achieved by Cre-Lox recombination. Deletion of Dicer resulted in a global loss of miRNAs in aortic SMC. Furthermore, Dicer-deficient mice exhibited a dramatic reduction in blood pressure due to significant loss of vascular contractile function and SMC contractile differentiation as well as vascular remodeling. Several of these results are consistent with our previous observations in SM-Dicer deficient embryos. Therefore, miRNAs are essential for maintaining blood pressure and contractile function in resistance vessels. Although the phenotype of miR-143/145 deficient mice resembles the loss of Dicer, the phenotypes of SM-Dicer KO mice were far more severe suggesting that additional miRNAs are involved in maintaining postnatal SMC differentiation
Perovskite solar cells using polymer electrolytes
This study deals with the characterization of methylammonium lead iodide (MAPbI3) material and the fabrication of perovskite solar cells using gel polymer electrolyte as the charge transport medium. The crystalline lead–based perovskite has been verified by x-ray diffraction (XRD). The [100], [200], [210], [211], [220], [300] and [222] reflection planes can be observed at 2θ angles of 14.10°, 28.35°, 31.90°, 34.95°, 40.40°, 43.15° and 50.20°, indicating a cubic crystal symmetry for CH3NH3PbI3. EDX spectrum showed a Pb:I ratio of approximately 1:3 as in CH3NH3PbI3. The band gap for lead-based perovskite is 1.45 eV estimated from UV-Vis absorption spectroscopy. The nanocrystalline MAPbI3 have been observed using field emission scanning electron microscopy (FESEM), where the average cuboid size of perovskite nanocrystals is 380 nm. The cell have been fabricated using gel polymer electrolyte with composition 17.02 wt.% PVA–13.93 wt.% TBAI–0.96 wt.% I2– 68.09 wt.% DMF. The cell exhibits a power conversion efficiency (PCE) of 1.28% with open circuit voltage (Voc) 0.58 mV, short circuit current density (Jsc) 3.74 mA cm−2 and fill factor (FF) 59.18%
Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells
© 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo
Anti-SARS-CoV2 antibody responses in serum and cerebrospinal fluid of COVID-19 patients with neurological symptoms
Antibody responses to SARS-CoV-2 in serum and CSF from 16 COVID-19 patients with neurological symptoms were assessed using two independent methods. IgG specific for the virus spike protein was found in 81% of cases in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in two cases with negative serology. Levels of IgG in both serum and CSF were associated with disease severity (p<0.05). All patients with elevated markers of CNS damage in CSF also had CSF antibodies (p=0.002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables
The Designers Leap: Boundary Jumping to foster interdisciplinarity between Textile Design and Science
Creative thinking is an instinctive problem-solving process for designers however, designers alone cannot solve real-world problems. Collaboration between higher education and industry, and across design and science disciplines can create new paradigms of research to address societal and economic challenges. This paper argues from the perspective of fashion and textile designers, for design to be at the heart of the collaborative research process and advocates for co-design, speculative-design and scenario design to be considered as valid methodologies to foster interdisciplinarity. Perspectives on interdisciplinary partnerships across academic disciplines and with industry are typified by two very different reflections of collaborative projects between fashion designers, textile designers, scientists and industrial partners. The paper identifies commonalities and differences between scientists and designers, with particular relevance to textiles, in a bid to understand how they may collaborate more effectively in the context of interdisciplinary work, and the paper further identifies factors needed for establishing common enablers for engaging in co-design. This is an under-explored field and highlights the changing role of the designer, and as such is of value to researchers in textiles, fashion and product design
Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins
Computer simulations were carried out of a number of AEDANS-labeled single cysteine mutants of a small reference membrane protein, M13 major coat protein, covering 60% of its primary sequence. M13 major coat protein is a single membrane-spanning, α-helical membrane protein with a relatively large water-exposed region in the N-terminus. In 10-ns molecular dynamics simulations, we analyze the behavior of the AEDANS label and the native tryptophan, which were used as acceptor and donor in previous FRET experiments. The results indicate that AEDANS is a relatively inert environmental probe that can move unhindered through the lipid membrane when attached to a membrane protein
Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation
<p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p
- …