94 research outputs found

    A hydroeconomic modeling framework for optimal integrated management of forest and water

    Full text link
    [EN] Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a payment for environmental services scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.This study is a component of four research projects: "CGL2011-28776-C02-02, HYDROSIL'', ''CGL2013-48424-C2-1-R, IMPADAPT'' and CGL2014-58127-C3-2, SILWAMED, funded by the Spanish Ministry of Science and Innovation and FEDER funds, and Determination of hydrologic and forest recovery factors in Mediterranean forests and their social perception, supported by the Ministry of Environment, Rural and Marine Affairs. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and the VAERSA staff for their support in allowing the use of the La Hunde experimental forest and for their assistance in carrying out the fieldwork. Experimental data belong to Reforest research group. For any question about the data, contact Antonio D. del Campo ([email protected]).Garcia-Prats, A.; Campo García, ADD.; Pulido-Velazquez, M. (2016). A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research. 52(10):8277-8294. https://doi.org/10.1002/2015WR018273S827782945210Andréassian, V. (2004). Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291(1-2), 1-27. doi:10.1016/j.jhydrol.2003.12.015Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., & Ilstedt, U. (2014). The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resources Research, 50(4), 3342-3354. doi:10.1002/2013wr015197Barron, O. V., Crosbie, R. S., Dawes, W. R., Charles, S. P., Pickett, T., & Donn, M. J. (2012). Climatic controls on diffuse groundwater recharge across Australia. Hydrology and Earth System Sciences, 16(12), 4557-4570. doi:10.5194/hess-16-4557-2012Bellot, J., Bonet, A., Sanchez, J. ., & Chirino, E. (2001). Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landscape and Urban Planning, 55(1), 41-53. doi:10.1016/s0169-2046(01)00118-9Bellot, J., & Chirino, E. (2013). Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecological Modelling, 266, 30-41. doi:10.1016/j.ecolmodel.2013.07.002Bent, G. C. (2001). Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. Forest Ecology and Management, 143(1-3), 115-129. doi:10.1016/s0378-1127(00)00511-9Birol, E., Karousakis, K., & Koundouri, P. (2006). Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145-156. doi:10.1016/j.ecolecon.2006.06.002Birot , Y. P. Marc 2011 3 4Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23. doi:10.1016/0022-1694(82)90117-2Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1-4), 28-61. doi:10.1016/j.jhydrol.2004.12.010Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture, Ecosystems & Environment, 104(1), 185-228. doi:10.1016/j.agee.2004.01.015Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598. doi:10.1093/treephys/21.9.589Cai, X., McKinney, D. C., & Lasdon, L. S. (2002). A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resources Research, 38(6), 21-1-21-14. doi:10.1029/2001wr000214Calabuig-Vila , E. 2012Calder, I. R. (2007). Forests and water—Ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251(1-2), 110-120. doi:10.1016/j.foreco.2007.06.015Chen, C., Eamus, D., Cleverly, J., Boulain, N., Cook, P., Zhang, L., … Yu, Q. (2014). Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. Journal of Hydrology, 519, 1084-1096. doi:10.1016/j.jhydrol.2014.08.032Dawes, W., Ali, R., Varma, S., Emelyanova, I., Hodgson, G., & McFarlane, D. (2012). Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrology and Earth System Sciences, 16(8), 2709-2722. doi:10.5194/hess-16-2709-2012Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7FAO 2015 Sustainable Forest Management (SFM) Toolbox http://www.fao.org/sustainable-forest-management/toolbox/sfm-home/en/Gallart, F., & Llorens, P. (2003). Catchment Management under Environmental Change: Impact of Land Cover Change on Water Resources. Water International, 28(3), 334-340. doi:10.1080/02508060308691707Garcia-Prats, A., Antonio, D. C., Tarcísio, F. J. G., & Antonio, M. J. (2015). Development of a Keetch and Byram—Based drought index sensitive to forest management in Mediterranean conditions. Agricultural and Forest Meteorology, 205, 40-50. doi:10.1016/j.agrformet.2015.02.009Gee, G. W., Fayer, M. J., Rockhold, M. L., Wierenga, P. J., Young, M. H., & Andraski, B. J. (1994). Variations in Water Balance and Recharge Potential at Three Western Desert Sites. Soil Science Society of America Journal, 58(1), 63. doi:10.2136/sssaj1994.03615995005800010009xGuan, H., Simunek, J., Newman, B. D., & Wilson, J. L. (2010). Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope. Hydrological Processes, 24(9), 1095-1105. doi:10.1002/hyp.7571Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. doi:10.1016/j.jhydrol.2009.06.037Heinz, I., Pulido-Velazquez, M., Lund, J. R., & Andreu, J. (2007). Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive. Water Resources Management, 21(7), 1103-1125. doi:10.1007/s11269-006-9101-8Hernandez-Santana, V., Asbjornsen, H., Sauer, T., Isenhart, T., Schilling, K., & Schultz, R. (2011). Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape. Forest Ecology and Management, 261(8), 1415-1427. doi:10.1016/j.foreco.2011.01.027Ilstedt, U., Bargués Tobella, A., Bazié, H. R., Bayala, J., Verbeeten, E., Nyberg, G., … Malmer, A. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6(1). doi:10.1038/srep21930Jack, B. K., Kousky, C., & Sims, K. R. E. (2008). Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proceedings of the National Academy of Sciences, 105(28), 9465-9470. doi:10.1073/pnas.0705503104Jhorar, R. K., van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2004). Calibration of effective soil hydraulic parameters of heterogeneous soil profiles. Journal of Hydrology, 285(1-4), 233-247. doi:10.1016/j.jhydrol.2003.09.003Koundouri, P. (2004). Current Issues in the Economics of Groundwater Resource Management. Journal of Economic Surveys, 18(5), 703-740. doi:10.1111/j.1467-6419.2004.00234.xLasch, P., Badeck, F.-W., Suckow, F., Lindner, M., & Mohr, P. (2005). Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management, 207(1-2), 59-74. doi:10.1016/j.foreco.2004.10.034Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030Lund, J. R., Cai, X., & Characklis, G. W. (2006). Economic Engineering of Environmental and Water Resource Systems. Journal of Water Resources Planning and Management, 132(6), 399-402. doi:10.1061/(asce)0733-9496(2006)132:6(399)Molina, A. J., & del Campo, A. D. (2012). The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 269, 206-213. doi:10.1016/j.foreco.2011.12.037Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. doi:10.1029/wr012i003p00513Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6Nicks , A. D. G. A. Gander 1994 Proceedings of the 5th International Conference on Computers in AgriculturePeck, A. J., & Williamson, D. R. (1987). Effects of forest clearing on groundwater. Journal of Hydrology, 94(1-2), 47-65. doi:10.1016/0022-1694(87)90032-1Pulido-Velázquez, M., Andreu, J., & Sahuquillo, A. (2006). Economic Optimization of Conjunctive Use of Surface Water and Groundwater at the Basin Scale. Journal of Water Resources Planning and Management, 132(6), 454-467. doi:10.1061/(asce)0733-9496(2006)132:6(454)Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51-65. doi:10.1016/j.ecolecon.2007.12.016Pulido-Velazquez, M., Alvarez-Mendiola, E., & Andreu, J. (2013). Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. Journal of Water Resources Planning and Management, 139(5), 583-592. doi:10.1061/(asce)wr.1943-5452.0000262Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577-1593. doi:10.1111/j.1365-2486.2005.01026.xScanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15), 3335-3370. doi:10.1002/hyp.6335Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). rosetta : a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3-4), 163-176. doi:10.1016/s0022-1694(01)00466-8Sprintsin, M., Cohen, S., Maseyk, K., Rotenberg, E., Grünzweig, J., Karnieli, A., … Yakir, D. (2011). Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agricultural and Forest Meteorology, 151(5), 565-574. doi:10.1016/j.agrformet.2011.01.001Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739Ungar, E. D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., & Schiller, G. (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. Forest Ecology and Management, 298, 39-51. doi:10.1016/j.foreco.2013.03.003Van Dijk, A. I. J. M., & Keenan, R. J. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1-2), 1-9. doi:10.1016/j.foreco.2007.06.010Van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., & Dowling, T. I. (2007). Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. Forest Ecology and Management, 251(1-2), 94-109. doi:10.1016/j.foreco.2007.06.012Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44(5), 892. doi:10.2136/sssaj1980.03615995004400050002xVan Genuchten, M. T., & Jury, W. A. (1987). Progress in unsaturated flow and transport modeling. Reviews of Geophysics, 25(2), 135. doi:10.1029/rg025i002p00135Wang, X.-P., Berndtsson, R., Li, X.-R., & Kang, E.-S. (2004). Water balance change for a re-vegetated xerophyte shrub area/Changement du bilan hydrique d’une zone replantée d’arbustes xérophiles. Hydrological Sciences Journal, 49(2). doi:10.1623/hysj.49.2.283.34841West, P. W. (2009). Tree and Forest Measurement. doi:10.1007/978-3-540-95966-3Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., … Timouk, F. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3-4), 241-258. doi:10.1016/j.agrformet.2004.04.008Willmott, C. J. (1981). ON THE VALIDATION OF MODELS. Physical Geography, 2(2), 184-194. doi:10.1080/02723646.1981.10642213Willmott, C. J. (1984). On the Evaluation of Model Performance in Physical Geography. Spatial Statistics and Models, 443-460. doi:10.1007/978-94-017-3048-8_23Wyatt, C. J. W., O’Donnell, F. C., & Springer, A. E. (2014). Semi-Arid Aquifer Responses to Forest Restoration Treatments and Climate Change. Groundwater, 53(2), 207-216. doi:10.1111/gwat.12184Zavala, M. A., Espelta, J. M., & Retana, J. (2000). Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. The Botanical Review, 66(1), 119-149. doi:10.1007/bf0285778

    Using Location-Allocation Algorithms to Distribute Multioutlet Hydrants in Irrigation Networks Design

    Full text link
    Location-allocation algorithms allow for situating services in an efficient way in zones where the demand is dispersed across the area. In the present work, the minisum location-allocation algorithm is used to optimize the placement multioutlet hydrants, which are needed to supply irrigation to the region. The objective function aims to minimize the total access costs of the service. Because the total number of hydrants is the same as what currently exists the results can be compared with the presented solution. The proposed model reduces the total distance run to access the service, from 16,177 m to 13,560 m (16.17%), and the objective function (proportional to the cost) by 28.95%. © 2012 American Society of Civil Engineers.González Villa, FJ.; García Prats, A. (2011). Using Location-Allocation Algorithms to Distribute Multioutlet Hydrants in Irrigation Networks Design. Journal of Irrigation and Drainage Engineering. 274-283. doi:10.1061/(ASCE)IR.1943-4774.0000405S27428

    Ectopic third molar in the mandibular condyle: a review of the literature

    Get PDF
    Objectives: To evaluate the etiopathogenesis, clinical features, therapeutic options, and surgical approaches for removal of ectopic third molars in the mandibular condyle. Study design: MEDLINE search of articles published on ectopic third molars in the mandibular condyle from 1980 to 2011. 14 well-documented clinical cases from the literature were evaluated together with a new clinical case provided by the authors, representing a sample of 15 patients. Results: We found a mean age at diagnosis of 48.6 years and a higher prevalence in women. In 14 patients, associated radiolucent lesions were diagnosed on radiographic studies and confirmed histopathologically as odontogenic cysts. Clinical symptoms were pain and swelling in the jaw or preauricular region, trismus, difficulty chewing, cutaneous fistula and temporomandibular joint dysfunction. Treatment included conservative management in one case and in the other cases, surgical removal by intra- or extraoral approaches, the latter being the most common approach carried out. In most reported cases, serious complications were not outlined. Conclusions: The etiopathogenic theory involving odontogenic cysts in the displacement of third molars to the mandibular condyle seems to be the most relevant. They must be removed if they cause symptoms or are associated with cystic pathology. The surgical route must be planned according to the location and position of the ectopic third molar, and the possible morbidity associated with surgery

    Evaluación de la recarga producida mediante manejo de una masa de Pinus halepensis con técnicas de silvicultura hidrológica

    Full text link
    [ES] El balance hídrico, y especialmente la recarga por percolación profunda de un suelo, puede ser modificado a nivel de parcela mediante el manejo de la masa. Extendido a nivel de cuenca debemos esperar que dicha modificación afecte al conjunto del ciclo hidrológico. Sin embargo, el primer paso es la cuantificación del efecto que produce sobre el balance de agua el manejo silvícola de la masa con fines hidrológicos a nivel de parcela. Para ello se diseñó un experimento en una parcela de Pinus halepensis en la que se realizaron aclareos de distinta intensidad. El ciclo del agua se monitorizó midiendo la temperatura, humedad relativa, pluviometría dentro y fuera de la masa, el contenido de agua del suelo y la transpiración. Para cuantificar el volumen de agua que atraviesa la zona de raíces se calibró y validó el modelo HYDRUS-1D, el cual resuelve las ecuaciones de flujo en medios porosos saturados y no saturados. Los resultados demuestran que la recarga conseguida mediante el manejo de la masa puede ser modificada, consiguiendo valores de recarga netamente superiores en las parcelas tratadas. Sin embargo reducciones por debajo del 50% la fracción de cabida cubierta (FCC) no producen mejora en la recarga. Se comprueba que el régimen de precipitaciones tiene un efecto importante en el valor de la recarga. Dado que se trata de parcelas llanas en las que no se evidenció escorrentía, el estudio debe ser ampliado a laderas en donde este componente del ciclo presente una mayor importancia.García Prats, A.; Campo García, ADD.; Molina Herrera, A. (2015). Evaluación de la recarga producida mediante manejo de una masa de Pinus halepensis con técnicas de silvicultura hidrológica. Cuadernos de la Sociedad Española de Ciencias Forestales. (41):195-210. http://hdl.handle.net/10251/65572S1952104

    VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits

    Full text link
    [EN] In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus fruits (green mould) using visible/near infrared (VIS/NIR) hyperspectral images. To build the discriminant model a set of oranges and mandarins was infected by the fungus and another set was infiltrated just with water for control purposes. A double cross-validation strategy is used to validate the discriminant models. Finally, permutation testing is used to select a few bands offering the best correct classification rates in the validation set. The discriminant models developed here can be potentially implemented in a fruit packinghouse to detect infected citrus fruits at their arrival from the field with affordable multispectral (3 5 channels) cameras installed in the packinglines.This research was partially funded by the Spanish Ministry of Science and Innovation through grants DPI2011-28112-C04-02 and DPI2014-55276-C05-1R, and by INIA through grant RTA2012-00062-C04-01. In all cases with the support of European FEDER funds. Authors thank Lluis Palou from the Centro de Tecnologia Postcosecha at the IVIA for the help and supervision in the innoculation process of the fruits.Folch Fortuny, A.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156:241-248. https://doi.org/10.1016/j.chemolab.2016.05.005S24124815

    Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images

    Full text link
    [EN] In polyethylene terephthalate's (PET)'s recycling processes, separation from polyvinyl chloride (PVC) is of prior relevance due to its toxicity, which degrades the final quality of recycled PET. Moreover, the potential presence of some polymers in mixed plastics (such as PVC in PET) is a key aspect for the use of recycled plastic in products such as medical equipment, toys, or food packaging. Many works have dealt with plastic classification by hyperspectral imaging, although only some of them have been directly focused on PET sorting and very few on its separation from PVC. These works use different classification models and preprocessing techniques and show their performance for the problem at hand. However, still, there is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method, when using NIR hyperspectral images. There is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method when using near-infrared hyperspectral images.Universitat Politecnica de Valencia, Grant/Award Number: UPV-FE-16-B18This research was partially supported by the Universitat Politècnica de València under the project UPV‐FE‐16‐B18.Galdón-Navarro, B.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2018). Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. Journal of Chemometrics. 32(1):1-14. https://doi.org/10.1002/cem.2980S11432

    Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks

    Full text link
    [EN] Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients.This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and FEDER funds. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana), ACCIONA for their support in allowing the use of the experimental forest and for their assistance in carrying out the fieldwork.Garcia-Prats, A.; González Sanchis, MDC.; Campo García, ADD.; Lull, C. (2018). Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks. The Science of The Total Environment. 639:725-741. https://doi.org/10.1016/j.scitotenv.2018.05.134S72574163

    Complications after superficial parotidectomy for pleomorphic adenoma

    Get PDF
    The significance of complications after superficial parotidectomy remains unclear, since prospective studies are lacking. The aim of this study was to evaluate facial nerve dysfunction and other postoperative complications after superficial parotidectomy for pleomorphic adenoma of the superficial lobe and to identify the associated risk factors. Prospective and descriptive clinical study on 79 patients undergoing formal superficial parotidectomy with the modified facelift incision, dissection of the facial nerve and reconstruction with the superficial musculoaponeurotic system flap. Function of the facial nerve using the House-Brackmann scale and the intra- and postoperative complications were recorded at 1 week and 1, 3, 6 and 12 months. A descriptive, inferential and binary logistic regression analysis were performed for the variables facial nerve dysfunction, tumor size and location, clinical presentation and duration of surgery. 77.2% of the patients presented facial paresis at 1 week, with the marginal-mandibular branch being the most commonly affected (64.5%). 94.9% recovered the facial function at 6 months and 100% at 12 months. A statistically significant relationship was found between the appearance of facial paresis and tumor location in the superior lateral area of the superficial lobe, size >2 cm and prolonged operative time. None of the remaining variables showed significant differences at any study timepoint. At 12 months, 57% of patients had recovered tactile sensitivity in the earlobe. The clinical occurrence of Frey?s syndrome was 11.4%. Despite the high incidence of postoperative facial paresis at 1 week, its magnitude was low and the recovery time was short. Tumor location in the parotid superficial lobe upper area, size and prolonged operative time are risk factors that can worsen facial paresis at different study timepoints. The knowledge of these complications is relevant for patient´s counseling and to achieve better long-term outcomes

    From local knowledge to decision making in climate change adaptation at basin scale. Application to the Jucar River Basin, Spain

    Full text link
    [EN] Climate change is challenging the conventional approaches for water systems planning. Two main approaches are commonly implemented in the design of climate change adaptation plans: impact-oriented top-down approaches and vulnerability-oriented bottom-up approaches. In order to overcome the shortcomings of both approaches and take advantage of their strengths, we propose an integrative methodology to define adaptation strategies at basin scale, identifying and combining potential changes in water demand and water supply infrastructure along with climate variability and change. The impact of climate change on future local water availability is assessed applying a top-down approach. Local knowledge is used through a participatory bottom-up approach to foresee future scenarios of evolution of the agricultural sector and agricultural water demand, and to identify locally relevant adaptation strategies. A hydroeconomic model integrates the information from both approaches to identify a socially acceptable and cost-effective program of measures for each climate scenario. This method was applied to the Jucar basin, a highly regulated basin with a tight equilibrium between water resources and demands. The results show an important variability of climate change impacts across the basin, with main inflow reductions in the headwaters. The stakeholders prioritized the adaptation options of change to drip irrigation, use of non-conventional resources, and changes in water governance. The results obtained from the hydroeconomic model show that the portfolio of selected adaptation measures could significantly reduce the system's average annual deficit and costOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study has received funding from the European Union's Horizon 2020 research and innovation programme under the GoNEXUS project (GA no. 101003722), as well from ADAPTAMED (RTI2018-101483-B-I00) and the former IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economia y Competitividad) and European FEDER funds at the early stages. PM-G has been also supported by a FPI grant from the PhD Training Program (BES-2014-070490) of the former MINECO.Marcos-García, P.; Pulido-Velazquez, M.; Sanchis Ibor, C.; García Molla, M.; Ortega-Reig, M.; Garcia-Prats, A.; Girard-Martin, CDP. (2023). From local knowledge to decision making in climate change adaptation at basin scale. Application to the Jucar River Basin, Spain. Climatic Change. 176(4):1-23. https://doi.org/10.1007/s10584-023-03501-8123176

    Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments

    Full text link
    [EN] Water-oriented forest management is an urgent need in semiarid catchments. In the case of low-biomass forests and shrublands, the magnitude, efficiency and temporal duration of thinning effects on rainfall partitioning needs further attention. This work studies the effects of juvenile thinning and shrub clearing on stemflow (Stf), throughfall (Thr) and interception (It) in two low-biomass forests (CAL: post-fire Aleppo pine saplings with 74% of basal area, BA, removed; and HU: evergreen oak coppice with 41% of BA removed), as well as the relative contribution of the event meteorology. The effects are compared with a control plot during the first 3¿4¿years. Stf rate (%) decreased with density and, on a tree scale, it was enhanced by the treatment only in the bigger oaks. Event Thr increased from 55 to 81% and from 68 to 86% of gross rainfall (Pg) for CAL and HU respectively after thinning, resulting in about 15% less intercepted Pg. High evaporative conditions and an open (ventilated) forest structure led to high It rates in the controls when comparing with other studies, thus making the treatments more efficient in net precipitation (Pn) gain (Pg intercepted decreased 17% or 2.3% per unit of LAI or BA removed respectively). In general, depths (mm) were mostly explained (>75%) by the rainfall characteristics of the event (e.g. amount, duration, intensity), with a limited contribution from forest structure (e.g. cover, LAI) and event meteorology (e.g. temperature, wind speed, vapor pressure deficit). On the contrary, when expressed as rates (% of Pg), forest structure and event-meteorology gained importance (explaining 25¿65%), especially in the drier site (CAL). In this site, the low gain in Pn (~25¿mm per year on average) was offset with no temporal dampening during the span of this study, as observed in the wetter site (HU), where plant growth tended to mitigate the effect of the treatment by the end of the study. The results presented here make a contribution to a better understanding of the effects of water-oriented forest management in low-biomass semiarid forests.This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and the FEDER fund of the EU. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana), Serra municipality, VAERSA and ACCIONA for their support in allowing the use of the experimental forest and for their assistance in carrying out the fieldwork.Campo García, ADD.; González Sanchís, MDC.; Lidón, A.; Ceacero Ruiz, CJ.; Garcia-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology. 565:74-86. https://doi.org/10.1016/j.jhydrol.2018.08.013S748656
    corecore