78 research outputs found

    Infantile spasms: review of the literature and personal experience

    Get PDF
    This epileptic disorder has become a classic topic for neuropediatricians and the interest is documented by the large number of publications on this subject

    Hydroxytyrosol but not resveratrol ingestion induced an acute increment of post exercise blood flow in brachial artery

    Get PDF
    The aim of this study was to test if previous ingestion of compounds containing resveratrol or hydroxytyrosol, followed by an exhausting hand grip exercise, could induce an acute post-exercise increase in brachial blood flow. Six healthy subjects (three males and three females, 35 ± 7 years), 60 minutes after ingestion of a capsule containing 200 mg of resveratrol or 30 ml of extra virgin olive oil enriched with tyrosol, oleuropein and hydroxytyrosol, performed a hand grip exercise equal to half of their maximum strength until they were no longer able to express the same force (2-day interval between tests). The nonparametric Wilcoxon signed rank test was used for statistical evaluations. Brachial artery blood flow (Fba) and both blood velocity (Vba) and artery diameter (Dba) were assessed immediately after exercise cessation by means of colour Doppler ultrasound. After ingestion of the oil mixture the post-exercise value of Fba median was 2.4 times higher than that after ingestion of the resveratrol compound (P = 0.03), and also the Vba median concerning the hydroxytyrosol was 1.9 times higher than that of the resveratrol (P = 0.03). Both functional foods did not lead to a significant difference in the Dba medians. These results indicate that hydroxytyrosol, but not resveratrol, may be an effective adjuvant of recreational or agonistic, long-lasting sports performances, thanks to the powerful blood flow increment which can be obtained as soon as one hour from its oral intake

    The Early Steps of Molecule-to-Material Conversion in Chemical Vapor Deposition (CVD): A Case Study

    Get PDF
    Transition metal complexes with \u3b2-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn \u3b2-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N\u2032,N\u2032-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures

    Toward molecular wires confined in zeolite channels for an effective transport of electronic excitation energy.

    Get PDF
    Sunlight is the fundamental energy source sustaining life on Earth. Green plants are provided of very sophisticated and highly efficient tools to exploit light, they are able to harvest sunlight and to transport electronic excitation energy by means of a particular “antenna system” to reaction centres (natural photosynthesis). The antenna consists of regular arrangements of chlorophyll molecules held at fixed positions by means of proteins. Light absorbed by any of these molecules is transported - by radiationless energy transfer (FRET) - to reaction centres, providing the energy necessary for the chemical processes to be initiated. A green leaf consists of millions of such well-organized antenna devices. A long-standing challenge has been the development of an artificial system able to mimic the photosynthetic system. Artificial antenna systems can be realized once several organized chromophores are able to absorb the incident light and to channel the excitation energy to a common acceptor component1-3. Artificial antenna can be built by incorporating dyes into the one-dimensional channels of zeolite L (ZL). ZL crystals feature strictly parallel nano sized channels arranged in hexagonal symmetry. These channels can be filled with high concentration of suitable guests. The geometric constraints imposed by the host structure allow achieving supramolecular organization of photoactive guests1. It has been shown2,that the properties of the dye-ZL systems depend on the molecular packing inside the channels, controlling the intermolecular and the dyes/framework interactions In this work we presents a study on the optical properties of a two –dyes antenna system in which fluorenone molecules (donor molecule) and thionine(acceptor molecule) are organized in Zeolite L porosities. To interpret the optical properties of the hybrids a detailed structural study at atomistic level was mandatory. Due to the impossibility of studying from the structural point of view a two –dyes systems, two “one-dye” hybrids (ZL/fluorenone and ZL/thionine) were firstly synthesized and characterized to investigate the intermolecular and the dyes/framework interactions4. The results of thermogravimetric, IR, and X-ray structural refinements carried out for the one-dye system ZL/FL established that 1.5 molecules per unit cell is the maximum FL loading , in contrast with the data reported previously in literature5 and that the FL carbonyl group strong interact with a K+ of the ZL. The FL distribution at maximum loading can be consider as a self-assembly of planar dye molecules into a noncovalent nanoladder. FL molecules organized in such a single, continuous nanostructure of dye molecules did not exhibit significant electronic interactions. Indeed, both absorption (recorded in the diffuse reflectance mode) and photoemission electronic spectra of ZL/FL systems with different FL loading scaled almost linearly in intensity with the amount dye hosted in the unit cell (ranging from 0.5 to 1.5), without significant changes of the spectral profiles. Noticeably, the combination and steady state and time resolved photoluminescence data indicated that even at the maximum loading ca. 90% of FL molecules are photoluminescent, with significant increase in the average quantum yield with respect to FL molecules in solution. Such a finding clearly indicates that excited states coupling (Davydov splitting) is not contributing to the optical properties of the material. The structural study of the ZL/TH system revealed that the maximum possible loading of TH is equal to 0.3 molecules per unit cell in agreement with the TGA and literature data6. Short distances between the carbon, sulfur and nitrogen atoms and two water molecule sites , in turn at bond distance from the oxygen atoms of the main channel, suggested a water-mediated Th-ZL interactions7. Moreover, IR spectroscopy provided evidence of the interaction of the aromatic rings with the environment. This likely resulted in an increase of the rate of non-radiative decay of Th molecules in the electronic excited state, because only ca. 5% of Th molecules hosted in the ZL channel appeared photoluminescent. The occurrence of energy transfer from excited FL molecules forming the noncovalent nanoladder in the ZL channels and Th, in the ground state, deposited on the external surface of ZL particles are currently under investigation. In conclusion, we have here presented a study on the physico-chemical properties of dense molecular wires encapsulated in the one-dimensional pores arrays of Zeolite L. Concerning the optical properties of our composites, no evidence of Davydov splitting emerged from our study, indicating that one of the main competitors of the FRET mechanism is not operative notwithstanding the close packed arrangement of FL. We believe that this feature is of overwhelming relevance in view of application of such a system in artificial antenna systems

    Molecular wires confined in zeolite L channels for an effective transport of electronic excitation energy: a synchrotron structural study.

    Get PDF
    Sunlight is the fundamental energy source sustaining life on Earth. Green plants are provided of very sophisticated and highly efficient tools to exploit light, they are able to harvest sunlight and to transport electronic excitation energy by means of a particular \u201cantenna system\u201d to reaction centers (natural photosynthesis).The development of an artificial system able to mimic the natural phenomenon has been a long-standing challenge. Artificial antenna systems can be realized once several organized chromophores are able to absorb the incident light and to channel the excitation energy to a common acceptor component [1-3]. The optical properties of the systems depend on the molecular packing inside the channels. Artificial antenna can be built by incorporating suitable guests into the one-dimensional channels of zeolite L (ZL). In this work we present a detailed structural study of two hybrid systems in which dyes (fluorenone and thionine) are encapsulated in zeolite L channels. These two molecules were chosen since it has been demonstrated that a \u201ctwo \u2013dyes antenna system\u201d - in which fluorenone (FL) (donor molecule) and thionine (Th) (acceptor molecule) are organized in Zeolite L porosities - shows remarkable optical properties. Due to the impossibility of studying, from the structural point of view a \u201ctwo \u2013dyes systems\u201d, two \u201cone-dye\u201d hybrids (ZL/fluorenone and ZL/thionine) were firstly synthesized and characterized [4]. The results of thermogravimetric, IR, and X-ray structural refinements carried out for the one-dye ZL/FL and ZL/Th systems established that 1.5 molecules of FL and 0.3 molecules of Th per unit cell is the maximum loading, respectively. The FL carbonyl group strong interacts with a K+ of the ZL. On the other hand, short distances between the carbon, sulfur and nitrogen atoms of Th and two water molecule sites, in turn at bond distance from the oxygen atoms of the main channel, suggested a water-mediated Th-ZL interactions. The energy transfer from excited FL molecules, forming the non-covalent nano-ladder in the ZL channel, and Th, deposited on the external surface of ZL particles, is currently under investigation. In conclusion concerning the optical properties of our composites, no evidence of Davydov splitting emerged from our study, indicating that one of the main competitors of the FRET mechanism is not operative notwithstanding the close packed arrangement of FL. We believe that this feature is of overwhelming relevance in view of application of such a system in artificial antenna devices. The authors acknowledge the Italian Ministry of Education, MIUR-Project: \u201cFuturo in Ricerca 2012 - ImPACT- RBFR12CLQD\u201d

    Manganese(II) Molecular Sources for Plasma-Assisted CVD of Mn Oxides and Fluorides: From Precursors to Growth Process

    Get PDF
    A viable route to manganese-based materials of high technological interest is plasma-assisted chemical vapor deposition (PA-CVD), offering various degrees of freedom for the growth of high-purity nanostructures from suitable precursors. In this regard, fluorinated \u3b2-diketonate diamine Mn(II) complexes of general formula Mn(dik)2\ub7TMEDA [TMEDA = N,N,N\u2032,N\u2032-tetramethylethylenediamine; Hdik = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (Hhfa), or 1,1,1-trifluoro-2,4-pentanedione (Htfa)] represent a valuable option in the quest of candidate molecular sources for PA-CVD environments. In this work, we investigate and highlight the chemico-physical properties of these compounds of importance for their use in PA-CVD processes, through the use of a comprehensive experimental\u2013theoretical investigation. Preliminary PA-CVD validation shows the possibility of varying the Mn oxidation state, as well as the system chemical composition from MnF2 to MnO2, by simple modulations of the reaction atmosphere, paving the way to a successful utilization of the target compounds in the growth of manganese-containing nanomaterials for different technological applications

    Dye Loading influence on performances of Fluorenone/zeoliteL Light Harvester

    Get PDF
    Zeolite L (LTL), is an appealing and excellent host for the supramolecular organization of different kinds of molecules and complexes. However, relatively few experimental structural information is available about the orientation and alignment of the dye molecules in the zeolite pores. Hence, a detailed structural characterization is of great importance for understanding the functionality of these host-guest systems. Between all the possible guests, neutral dye fluorenone (C13H8O) (FL) has received a considerable attention [1,2] because of its ability to form a host-guest complex with LTL, stable if exposed at the atmosphere. Moreover, the fluorescent nature of fluorenone makes this complex interesting as a component of the energy relay system in artificial antennas. Although a detailed structural characterization is still lacking, theoretical studies have shown as the orientation of fluorenone is especially interesting as it is directly related to the light harvesting properties of fluorenone [3]. Moreover, it has shown as the presence of water can influence on the electronic spectra of this host-guest complex and then affect its performances as light harvester [3]. In this study, three different FL/K-LTL materials characterized by an increasing loading of FL have been synthesized by mixing in inert atmosphere the dehydrated K-LTL and FL powder in ratio of 0.5, 1.0, 1.5 and 2.0 molecules/unit cell, and then heating the samples at 120°C in air for 24 h. The vials were maintained under continuous rotation during the heating in order to optimize the contact between the zeolite and the dye. The samples so obtained were characterized by means of X-ray powder diffraction, thermo-gravimetric analysis, IR and UV-vis spectroscopies, fluorescence and nitrogen adsorption. The incorporation of FL into the K-LTL channels was confirmed by a significant change of the unit cell parameters and by drastic decrease in the K-LTL surface area also at low FL loading. The strong interaction between FL carbonyl group and the extraframework potassium cation predicted by theoretical modelling [1] was confirmed by the short bond distances (2.77 Å), evidenced in the Rietveld refined structure, and by the shift of the C=O stretching frequency evidenced in the IR spectra. Such an interaction explains why FL is not displaced by water molecules when FL/K-LTL hybrid is re-exposed to the air [1]. Interestingly, although the UV-vis absorption spectrum was almost unaffected by the FL loading, the corresponding emission spectrum evidenced a strong influence: the optimum FL/K-LTL ratio was then determined in order to optimize the performances of the device as light harvester. The structural information obtained theoretically and from XRD allowed also to explain the loading dependence of the optical properties of the material and to correlate it with the relative orientation of the fluorenone molecules in the zeolite channels

    Precision molecular threading/dethreading

    Get PDF
    Abstract: The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the \u201call-or-nothing\u201d effect, which turns a molecular \u201cspeed-bump\u201d into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic feature

    Molecular Signature of Biological Aggressiveness in Clear Cell Sarcoma of the Kidney (CCSK)

    Get PDF
    : Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases

    Notulae to the Italian alien vascular flora: 14

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates, published elsewhere, and corrections are provided as Suppl. materia
    • …
    corecore