4 research outputs found

    Towards the elaboration of an in vitro test to predict the carcinogenic nature of chemical and natural compounds used in the cosmetic industry

    No full text
    Les tests toxicologiques des produits cosmĂ©tiques Ă©taient classiquement rĂ©alisĂ©s sur des modĂšles animaux. Les coĂ»ts prohibitifs et l'Ă©volution de la perception de l'expĂ©rimentation animale dans le grand public ont encouragĂ© le dĂ©veloppement de tests in vitro capables de prĂ©dire la toxicitĂ© de composĂ©s potentiellement classables "CMR" (CancĂ©rigĂšne, MutagĂšne et/ou Reprotoxique). Plus rĂ©cemment, en cosmĂ©tique, les tests basĂ©s sur l'expĂ©rimentation animale ont Ă©tĂ© interdits dans l'Union europĂ©enne.Dans ce travail, nous avons comparĂ© les signatures transcriptomiques de composĂ©s cancĂ©rigĂšnes non gĂ©notoxiques sur des Ă©pithĂ©liums pulmonaires en utilisant des cultures bi-dimensionnelles (telles que les cellules d'Ă©pithĂ©lium bronchique humain normal, BEAS-2B) et tri-dimensionnelles (3D). Les cultures 3D sont des cellules cultivĂ©es en "interface air liquide" (ALI) reconstituant un Ă©pithĂ©lium diffĂ©renciĂ© composĂ© de diffĂ©rents types de cellules (cellules ciliĂ©es, cellules en gobelet, etc.). Trois cancĂ©rigĂšnes non gĂ©notoxiques connus (chlorure de cadmium (CdCl2), hydroquinone (HQ) et acĂ©tate de myristate de phorbol (PMA)) ont Ă©tĂ© sĂ©lectionnĂ©s dans cette Ă©tude pilote. Les cultures d'ALI et de BEAS-2B ont d'abord Ă©tĂ© analysĂ©es par l'Ă©tablissement du profil d'expression gĂ©nĂ©tique des puces Ă  ADN lors de l'incubation avec les substances toxiques. Cette analyse transcriptomique rĂ©alisĂ©e sur une population totale a rĂ©vĂ©lĂ© une rĂ©ponse comparable sur la base d'une signature de 200 gĂšnes entre les deux systĂšmes de culture utilisĂ©s et une meilleure reproductibilitĂ© en utilisant le modĂšle BEAS-2B. Ensuite, nous avons effectuĂ© une analyse transcriptomique sur cellules uniques afin d'identifier les biais potentiels liĂ©s aux systĂšmes de culture ALI et les diffĂ©rences dans la rĂ©ponse biologique au traitement au niveau des sous-populations cellulaires. Des signatures spĂ©cifiques de chaque agent toxique, ainsi qu’une hiĂ©rarchie de rĂ©ponse de chaque type cellulaire ont Ă©tĂ© Ă©tablies. Des signatures propres Ă  chaque type cellulaire ont Ă©tĂ© mise en Ă©vidence, suggĂ©rant le bien-fondĂ© basĂ© sur une approche d’analyse transcriptomique sur cellules niques. Une comparaison entre les ensembles de donnĂ©es sur cellules uniques obtenues grĂące au systĂšme bi-dimensionnel et au systĂšme ALI a Ă©galement Ă©tĂ© effectuĂ©e, mettant en Ă©vidence un manque de corrĂ©lation entre BEAS-2B et les populations cellulaires prĂ©cĂ©demment dĂ©crites dans les cultures tri-dimensionnelles.Globalement, nos rĂ©sultats montrent que le systĂšme ALI associĂ© Ă  une analyse transcriptomique sur cellules uniques peut fournir des informations supplĂ©mentaires par rapport Ă  l'analyse transcriptomique sur population totale. Des expĂ©riences devront ĂȘtre rĂ©alisĂ©es ultĂ©rieurement sur un plus grand nombre de substances cancĂ©rigĂšnes non gĂ©notoxiques pour dĂ©terminer si cette mĂ©thodologie peut fournir des signatures spĂ©cifiques, prĂ©disant la nature cancĂ©rigĂšne non gĂ©notoxique d’un composĂ© chimique.Toxicological tests for cosmetic products were classically performed on animal models. Prohibitive costs and evolution of the perception about animal experimentation in the general public have encouraged the development of in vitro tests capable of predicting the toxicity of compounds potentially classifiable as “CMR” (Carcinogenic, Mutagenic and/or Reprotoxic). More recently, tests based on animal experimentation have been banned in the European Union.In this work, we have compared transcriptomic signatures of non-genotoxic carcinogenic compounds on lung epithelia using bi-dimensional (such as the normal human bronchial epithelium cells, BEA-2B) and tri-dimensional (3D) cultures. 3D cultures are cells cultured in “air liquid interface” (ALI) reconstitute a differentiated epithelium composed of different types of cells (ciliated cells, goblet cells, etc.). Three known non-genotoxic carcinogens (cadmium chloride (CdCl2), hydroquinone (HQ) and Phorbol Myristate acetate (PMA)) were selected in this pilot study. ALI and BEAS-2B cultures were first analysed by microarray gene expression profiling upon incubation with the toxicants. This transcriptomic analysis performed on bulk cells revealed a comparable response based on a 200 genes signature between the two culture systems used and a better reproducibility when using the BEAS-2B model. Next, we performed single cell transcriptomic analysis to identify potential bias linked to the ALI culture systems and differences in the biological response to the treatment at the cell subpopulations level. We identified cell-type specific responses that allowed us to establish a transcriptomic signature for each cell type composing the ALI system in response to the toxicants and a hierarchy of “responding cell types”. Individual, toxicant-specific signatures were also established.A comparison between single-cell dataset belonging to bi-dimensional and ALI system, were also performed highlighting a lack of correlation between BEAS-2B and the cell populations previously described in the tri-dimensional cultures.Overall, our results show that the ALI system associated with a single cell transcriptomic analysis can provide additional information compared to bulk transcriptomic analysis. Subsequent experiments on a larger number of non-genotoxic carcinogens will have to be performed to determine whether this methodology can provide specific signatures, predicting the non-genotoxic carcinogenic nature of toxicant

    Vers l'élaboration d'un test in vitro pour prédire la nature cancérigÚne de composés chimiques et naturels utilisés dans l'industrie cosmétique

    No full text
    Toxicological tests for cosmetic products were classically performed on animal models. Prohibitive costs and evolution of the perception about animal experimentation in the general public have encouraged the development of in vitro tests capable of predicting the toxicity of compounds potentially classifiable as “CMR” (Carcinogenic, Mutagenic and/or Reprotoxic). More recently, tests based on animal experimentation have been banned in the European Union.In this work, we have compared transcriptomic signatures of non-genotoxic carcinogenic compounds on lung epithelia using bi-dimensional (such as the normal human bronchial epithelium cells, BEA-2B) and tri-dimensional (3D) cultures. 3D cultures are cells cultured in “air liquid interface” (ALI) reconstitute a differentiated epithelium composed of different types of cells (ciliated cells, goblet cells, etc.). Three known non-genotoxic carcinogens (cadmium chloride (CdCl2), hydroquinone (HQ) and Phorbol Myristate acetate (PMA)) were selected in this pilot study. ALI and BEAS-2B cultures were first analysed by microarray gene expression profiling upon incubation with the toxicants. This transcriptomic analysis performed on bulk cells revealed a comparable response based on a 200 genes signature between the two culture systems used and a better reproducibility when using the BEAS-2B model. Next, we performed single cell transcriptomic analysis to identify potential bias linked to the ALI culture systems and differences in the biological response to the treatment at the cell subpopulations level. We identified cell-type specific responses that allowed us to establish a transcriptomic signature for each cell type composing the ALI system in response to the toxicants and a hierarchy of “responding cell types”. Individual, toxicant-specific signatures were also established.A comparison between single-cell dataset belonging to bi-dimensional and ALI system, were also performed highlighting a lack of correlation between BEAS-2B and the cell populations previously described in the tri-dimensional cultures.Overall, our results show that the ALI system associated with a single cell transcriptomic analysis can provide additional information compared to bulk transcriptomic analysis. Subsequent experiments on a larger number of non-genotoxic carcinogens will have to be performed to determine whether this methodology can provide specific signatures, predicting the non-genotoxic carcinogenic nature of toxicant.Les tests toxicologiques des produits cosmĂ©tiques Ă©taient classiquement rĂ©alisĂ©s sur des modĂšles animaux. Les coĂ»ts prohibitifs et l'Ă©volution de la perception de l'expĂ©rimentation animale dans le grand public ont encouragĂ© le dĂ©veloppement de tests in vitro capables de prĂ©dire la toxicitĂ© de composĂ©s potentiellement classables "CMR" (CancĂ©rigĂšne, MutagĂšne et/ou Reprotoxique). Plus rĂ©cemment, en cosmĂ©tique, les tests basĂ©s sur l'expĂ©rimentation animale ont Ă©tĂ© interdits dans l'Union europĂ©enne.Dans ce travail, nous avons comparĂ© les signatures transcriptomiques de composĂ©s cancĂ©rigĂšnes non gĂ©notoxiques sur des Ă©pithĂ©liums pulmonaires en utilisant des cultures bi-dimensionnelles (telles que les cellules d'Ă©pithĂ©lium bronchique humain normal, BEAS-2B) et tri-dimensionnelles (3D). Les cultures 3D sont des cellules cultivĂ©es en "interface air liquide" (ALI) reconstituant un Ă©pithĂ©lium diffĂ©renciĂ© composĂ© de diffĂ©rents types de cellules (cellules ciliĂ©es, cellules en gobelet, etc.). Trois cancĂ©rigĂšnes non gĂ©notoxiques connus (chlorure de cadmium (CdCl2), hydroquinone (HQ) et acĂ©tate de myristate de phorbol (PMA)) ont Ă©tĂ© sĂ©lectionnĂ©s dans cette Ă©tude pilote. Les cultures d'ALI et de BEAS-2B ont d'abord Ă©tĂ© analysĂ©es par l'Ă©tablissement du profil d'expression gĂ©nĂ©tique des puces Ă  ADN lors de l'incubation avec les substances toxiques. Cette analyse transcriptomique rĂ©alisĂ©e sur une population totale a rĂ©vĂ©lĂ© une rĂ©ponse comparable sur la base d'une signature de 200 gĂšnes entre les deux systĂšmes de culture utilisĂ©s et une meilleure reproductibilitĂ© en utilisant le modĂšle BEAS-2B. Ensuite, nous avons effectuĂ© une analyse transcriptomique sur cellules uniques afin d'identifier les biais potentiels liĂ©s aux systĂšmes de culture ALI et les diffĂ©rences dans la rĂ©ponse biologique au traitement au niveau des sous-populations cellulaires. Des signatures spĂ©cifiques de chaque agent toxique, ainsi qu’une hiĂ©rarchie de rĂ©ponse de chaque type cellulaire ont Ă©tĂ© Ă©tablies. Des signatures propres Ă  chaque type cellulaire ont Ă©tĂ© mise en Ă©vidence, suggĂ©rant le bien-fondĂ© basĂ© sur une approche d’analyse transcriptomique sur cellules niques. Une comparaison entre les ensembles de donnĂ©es sur cellules uniques obtenues grĂące au systĂšme bi-dimensionnel et au systĂšme ALI a Ă©galement Ă©tĂ© effectuĂ©e, mettant en Ă©vidence un manque de corrĂ©lation entre BEAS-2B et les populations cellulaires prĂ©cĂ©demment dĂ©crites dans les cultures tri-dimensionnelles.Globalement, nos rĂ©sultats montrent que le systĂšme ALI associĂ© Ă  une analyse transcriptomique sur cellules uniques peut fournir des informations supplĂ©mentaires par rapport Ă  l'analyse transcriptomique sur population totale. Des expĂ©riences devront ĂȘtre rĂ©alisĂ©es ultĂ©rieurement sur un plus grand nombre de substances cancĂ©rigĂšnes non gĂ©notoxiques pour dĂ©terminer si cette mĂ©thodologie peut fournir des signatures spĂ©cifiques, prĂ©disant la nature cancĂ©rigĂšne non gĂ©notoxique d’un composĂ© chimique

    Identification of oncolytic vaccinia restriction factors in canine high-grade mammary tumor cells using single-cell transcriptomics.

    No full text
    Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naĂŻve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication

    Blockade of the pro‐fibrotic reaction mediated by the miR‐143/‐145 cluster enhances the responses to targeted therapy in melanoma

    No full text
    International audienceLineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy
    corecore