4,804 research outputs found

    Revealing quantum statistics with a pair of distant atoms

    Full text link
    Quantum statistics have a profound impact on the properties of systems composed of identical particles. In this Letter, we demonstrate that the quantum statistics of a pair of identical massive particles can be probed by a direct measurement of the exchange symmetry of their wave function even in conditions where the particles always remain spatially well separated and thus the exchange contribution to their interaction energy is negligible. We present two protocols revealing the bosonic or fermionic nature of a pair of particles and discuss possible implementations with a pair of trapped atoms or ions.Comment: 4+13 pages, v2 corresponds to the version published by PR

    Propagation and spectral properties of quantum walks in electric fields

    Get PDF
    We study one-dimensional quantum walks in a homogeneous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion and Anderson localization, depend very sensitively on the value of the electric field Φ\Phi, e.g., on whether Φ/(2π)\Phi/(2\pi) is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales.Comment: 7 pages, 4 figure

    A simple abstraction of arrays and maps by program translation

    Full text link
    We present an approach for the static analysis of programs handling arrays, with a Galois connection between the semantics of the array program and semantics of purely scalar operations. The simplest way to implement it is by automatic, syntactic transformation of the array program into a scalar program followed analysis of the scalar program with any static analysis technique (abstract interpretation, acceleration, predicate abstraction,.. .). The scalars invariants thus obtained are translated back onto the original program as universally quantified array invariants. We illustrate our approach on a variety of examples, leading to the " Dutch flag " algorithm

    Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter

    Get PDF
    We report on a high precision measurement of gravitational acceleration using ultracold strontium atoms trapped in a vertical optical lattice. Using amplitude modulation of the lattice intensity, an uncertainty Δg/g107\Delta g /g \approx 10^{-7} was reached by measuring at the 5th^{th} harmonic of the Bloch oscillation frequency. After a careful analysis of systematic effects, the value obtained with this microscopic quantum system is consistent with the one we measured with a classical absolute gravimeter at the same location. This result is of relevance for the recent interpretation of related experiments as tests of gravitational redshift and opens the way to new tests of gravity at micrometer scale.Comment: 4 pages, 4 figure

    40-Gb/s systems on G.652 fibers: comparison between periodic and all-at-the-end dispersion compensation

    Get PDF
    In the literature, two system solutions have been proposed to overcome high dispersion problems typical of G.652 fibers at high bit rates (40 Gb/s): they are periodic and all-at-the-end dispersion compensation. We carry out an exhaustive comparison between the two methods that, up to this moment, have been studied separately. In the first part, we introduce a simplified model on strong dispersion management (DM) with intrachannel four-waves mixing (IFWM) and intrachannel cross-phase modulation (IXPM). We then carry out extensive numerical simulations of a complete system in order to verify the results as a function of the input average power and of the input pulsewidth. Finally, we tackle a typical system aspect, i.e., the influence of nonlinear effects on dispersion compensating fibers (DCFs)

    A validation roadmap of multi-physics simulators of the resonator of mw-class cw gyrotrons for fusion applications

    Get PDF
    For a few years the multi-physics modelling of the resonance cavity (resonator) of MW-class continuous-wave gyrotrons, to be employed for electron cyclotron heating and current drive in magnetic confinement fusion machines, has gained increasing interest. The rising target power of the gyrotrons, which drives progressively higher Ohmic losses to be removed from the resonator, together with the need for limiting the resonator deformation as much as possible, has put more emphasis on the thermal-hydraulic and thermo-mechanic modeling of the cavity. To cope with that, a multi-physics simulator has been developed in recent years in a shared effort between several European institutions (the Karlsruher Institut für Technologie and Politecnico di Torino, supported by Fusion for Energy). In this paper the current status of the tool calibration and validation is addressed, aiming at highlighting where any direct or indirect comparisons with experimental data are missing and suggesting a possible roadmap to fill that gap, taking advantage of forthcoming tests in Europe

    Expectation Maximization in Deep Probabilistic Logic Programming

    Get PDF
    Probabilistic Logic Programming (PLP) combines logic and probability for representing and reasoning over domains with uncertainty. Hierarchical probability Logic Programming (HPLP) is a recent language of PLP whose clauses are hierarchically organized forming a deep neural network or arithmetic circuit. Inference in HPLP is done by circuit evaluation and learning is therefore cheaper than any generic PLP language. We present in this paper an Expectation Maximization algorithm, called Expectation Maximization Parameter learning for HIerarchical Probabilistic Logic programs (EMPHIL), for learning HPLP parameters. The algorithm converts an arithmetic circuit into a Bayesian network and performs the belief propagation algorithm over the corresponding factor graph

    A validation roadmap of multi-physics simulators of the resonator of mw-class cw gyrotrons for fusion applications

    Get PDF
    For a few years the multi-physics modelling of the resonance cavity (resonator) of MW-class continuous-wave gyrotrons, to be employed for electron cyclotron heating and current drive in magnetic confinement fusion machines, has gained increasing interest. The rising target power of the gyrotrons, which drives progressively higher Ohmic losses to be removed from the resonator, together with the need for limiting the resonator deformation as much as possible, has put more emphasis on the thermal-hydraulic and thermo-mechanic modeling of the cavity. To cope with that, a multi-physics simulator has been developed in recent years in a shared effort between several European institutions (the Karlsruher Institut für Technologie and Politecnico di Torino, supported by Fusion for Energy). In this paper the current status of the tool calibration and validation is addressed, aiming at highlighting where any direct or indirect comparisons with experimental data are missing and suggesting a possible roadmap to fill that gap, taking advantage of forthcoming tests in Europe

    Fidelity and Concurrence of conjugated states

    Get PDF
    We prove some new properties of fidelity (transition probability) and concurrence, the latter defined by straightforward extension of Wootters notation. Choose a conjugation and consider the dependence of fidelity or of concurrence on conjugated pairs of density operators. These functions turn out to be concave or convex roofs. Optimal decompositions are constructed. Some applications to two- and tripartite systems illustrate the general theorem.Comment: 10 pages, RevTex, Correction: Enlarged, reorganized version. More explanation
    corecore