6 research outputs found

    Inhibidores de la proteína de división celular bacteriana FtsZ dirigidos al sitio de unión del nucleótido

    Get PDF
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 16-06-201

    Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ

    Get PDF
    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.This work was supported by grants from Plan Nacional de Investigación BFU 2011-23416 (J.M.A.), BFU2099-09552 (P.C.), and SAF2010-22198 (M.L.L.-R.), grant CM S2010/BMD-2353 (M.L.L.-R, P.C., J.M.A.), and fellowships FPI (L.B.R.-A.), FPU (M.A.) and CSIC-JAE (E.R.-A.)

    Targeting bacterial cell division protein FtsZ with small molecules and fluorescent probes

    Get PDF
    Trabajo presentado en el 248th National Meeting of the American-Chemical-Society (ACS), celebrado en San Francisco, CA (Estados Unidos), del 10 al 14 de agosto de 201

    Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action

    No full text
    © 2014 American Chemical Society. Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 μM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 μM) with high antibacterial activity [MIC (MRSA) = 7 μM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.Peer Reviewe
    corecore