32,943 research outputs found

    Quantum heat fluctuations of single particle sources

    Full text link
    Optimal single electron sources emit regular streams of particles, displaying no low frequency charge current noise. Due to the wavepacket nature of the emitted particles, the energy is however fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single particle wavefunction properties and display strong non-classical features.Comment: 5 pages, 2 figure

    Recent Developments in Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is an uncommon genetic bone disease associated with brittle bones and fractures in children and adults. Although OI is most commonly associated with mutations of the genes for type I collagen, many other genes (some associated with type I collagen processing) have now been identified. The genetics of OI and advances in our understanding of the biomechanical properties of OI bone are reviewed in this article. Treatment includes physiotherapy, fall prevention, and sometimes orthopedic procedures. In this brief review, we will also discuss current understanding of pharmacologic therapies for treatment of OI

    Guidance algorithms for a free-flying space robot

    Get PDF
    Robotics is a promising technology for assembly, servicing, and maintenance of platforms in space. Several aspects of planning and guidance for telesupervised and fully autonomous robotic servicers are investigated. Guidance algorithms for proximity operation of a free flyer are described. Numeric trajectory optimization is combined with artificial intelligence based obstacle avoidance. An initial algorithm and the results of its simulating platform servicing scenario are discussed. A second algorithm experiment is then proposed

    Tomonaga-Luttinger physics in electronic quantum circuits

    Get PDF
    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids (TLL) is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade (DCB). Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to TLL physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal TLL curve, we demonstrate experimentally the predicted mapping between DCB and the transport across a TLL with an impurity.Comment: 9p,6fig+SI; to be published in nature comm; v2: mapping extended to finite range interactions, added discussion and SI material, added reference

    Constraining blazar distances with combined Fermi and TeV data: an empirical approach

    Full text link
    We discuss a method to constrain the distance of blazars with unknown redshift using combined observations in the GeV and TeV regimes. We assume that the VHE spectrum corrected for the absorption through the interaction with the Extragalactic Background Light can not be harder than the spectrum in the Fermi/LAT band. Starting from the observed VHE spectral data we derive the EBL-corrected spectra as a function of the redshift z and fit them with power laws to be compared with power law fits to the LAT data. We apply the method to all TeV blazars detected by LAT with known distance and derive an empirical law describing the relation between the upper limits and the true redshifts that can be used to estimate the distance of unknown redshift blazars. Using different EBL models leads to systematic changes in the derived upper limits. Finally, we use this relation to infer the distance of the unknown redshift blazar PKS 1424+240.Comment: 5 pages, 4 figures, accepted for publication in MNRAS, minor revisio

    The H.E.S.S. extragalactic sky

    Full text link
    The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from astrophysical objects. During its successful operations since 2002 more than 80 galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S. devotes over 400 hours of observation time per year to the observation of extra-galactic sources resulting in the discovery of several new sources, mostly AGNs, and in exciting physics results e.g. the discovery of very rapid variability during extreme flux outbursts of PKS 2155-304, stringent limits on the density of the extragalactic background light (EBL) in the near-infrared derived from the energy spectra of distant sources, or the discovery of short-term variability in the VHE emission from the radio galaxy M 87. With the recent launch of the Fermi satellite in 2008 new insights into the physics of AGNs at GeV energies emerged, leading to the discovery of several new extragalactic VHE sources. Multi-wavelength observations prove to be a powerful tool to investigate the production mechanism for VHE emission in AGNs. Here, new results from H.E.S.S. observations of extragalactic sources will be presented and their implications for the physics of these sources will be discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201
    corecore