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Abstract

Roboticsisa promisingtechnologyforassembly,servicing,and maintenanceofplatforms

inspace.This projectisinvestigatingseveralaspectsofplanningand guidancefortelesuper-

visedand fullyautonomous roboticservicel_.Thispaperdescribesongoingwork on guidance

algorithmsforproximityoperationsofa freeflyer.The generalapproachcombinesnumerictra-
jectoryoptimisationwith artificialintelligencebased obstacleavoidance.An initialalgorithm

and resultsofsimulatingiton a platformservicingscenarioaxediscussed.A secondalgorithm

experimentisthenproposed.
Keywords: Autonomous robotics, spacecraft servicing, artificial intelligence, trajectory

optimisation,obstacleavoidance.

1 Introduction

Robotics is a promising technology for assembly, servicing, and maintenance of platforms in space.

Robots will reduce expensive and risky astronaut extra-vehicular activity (EVA) around manned

systems and permit servicing of remote platforms. Several robots, for example, have been proposed

for the Space Station (see the reports of the NASA Advanced Technology Advisory Committee [1]

and subsequent studies, including the Phase B Automation and Robotics Plan for Work Package 1

[2], which has an excellent bibliography.) Proposals for spacecraft servicers include teleoperated,

telesupervised, and autonomous robots. Teleoperations will be the first step in deploying on-orbit

robots, but long term goals include telesupervision and perhaps full autonomy for servicers.

This project is investigating several aspects of planning and guidance for a telesupervised and

autonomous robotic servicers. This paper describes work on guidance algorithms for proximity

operations of a free flyer. First, the selection of a servicing scenario is described and the functional

focus of the project defined. Then the general project approach to developing guidance algorithms

is presented. The strategy is to combine numeric trajectory optimization with artificial intelligence

(AI) based obstacle avoidance to provide autonomous motion between specified start and goal

points. Such guidance would be essential for autonomous operations and would form a component

of a telesupervised system. The first algorithm and results of simulating it on the scenario are

discussed. Finally, a proposal is given for a second algorithm experiment.
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2 Robotic Spacecraft Servicer Scenario Definition

The domain of spacecraft servicing scenarios is large and varied. We considered these requirements
for the project scenario:

* The scenario should address the needs of the space community roughly 20 years hence.

• The scenario should drive advances in AI and guidance technology.

• The scenario should not impose requirements on other entities in the environment to facilitate

robot operation.

A note is needed about the last requirement. In most scenarios, it is possible to restrict or control

other entities and thus ease requirements on the servicing robot. For example, it may be mandated
that whenever a robot exits its orbiting home base, there will be no other entities active around the

base, or no entities around the base at all. Any platform to be serviced may be required to have

predefined corridors of safe approach for a servicer. Restrictions such as these will undoubtably be
imposed on other entities in the future; however, if they are not assumed at this point, this research
will aid in determining which restrictions are needed.

The next subsection defines a scenario in terms of the degree of autonomy assumed for the robot,

the location of servicing, the type of target platform, and the complexity of the surrounding envi-
ronment. The following subsection then describes the project focus within the selected scenario.

2.1 Scenario

A robotic servicer located in a bay of an orbiting home base is instructed to refuel and repair a

remote platform. It is given a service order, such as a human maintenance engineer would receive,

a description of the platform, including shape and current orbit (and probably where to obtain

updates on the orbit), and a deadline for completing the work. It must obtain necessary supplies,

exit the home base, perform orbit transfer, maneuver into proximity to the platform and inspect
it from several points of view, dock, and service the platform.

The platform isa complex shape composed of trusses,solarpanels,and antennae. Maneuvering

around such a platformwillrequiremore sophisticatedguidance than maneuvering around a small

compact satellite.The home base is also a complex shape, and it isbusy. Other robots and

astronautsare moving around the base,and obstaclesexistwithinitsvicinity.The robot has to

avoid multiple,moving, activelypropelledobjects.

2.2 Project Focus

This projectfocuseson guidance algorithmsfor the proximityoperationsperformed by the robot

near the home base and the platform. Proximity isdefinedas within 1000 feet.For theseoper-

ations,the robot has a cold-gasthrustersystem similarto that of NASA's Manned Maneuvering

Unit (MMU). To reflectthisfocus,the scenarioisfurtherdefinedto be an inspectiontask by a

maintenance robot at the Space Station.Thus the home base and targetplatform are the same,
and no orbittransfersare required.
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Therearefour major functionalcomponentsinvolvedin proximity guidance.

1. Identificationandtrackingof platformandobstacles.

2. Generationof feasiblegoalpositionsand times.

3. Generation of robot trajectories.

4. Execution of trajectories, including reactive planning to handle contingencies.

These experiments are focused initiallyon the thirdfunction,trajectorygeneration.Therefore,

a goal positionand time have alreadybeen determined as input to the guidance module. The

guidance system must plan a trajectoryto thisgoalstatewhich minimizes fueland avoidsforeseen

obstacles.

Itisassumed thatthisplanning activityoccurspriorto executionofthe trajectory,whilethe robot

isina safe,stablepositionand ableto sensethe scene.Some path planning researchersargue that

such predictiveplanning isof littleutilityfor terrainvehiclesand should be replacedby local,or

reactive,responsesto the immediate environment. This stems from the factthat roboticsensing

and modeling of an uncertainand changing world isincomplete and inaccurate,leadingto poor

plans.

Certainlyspace robotswillneed reactiveplanning capabilityto respond to activeobstacles,un-

foreseenobstacles,and other contingencies.However, thereare two arguments in favorofhaving

predictiveplanning as well.First,the environment isalmostentirelysynthetic,has a small number

of understandableobjects,and does not change rapidly.Accurate modeling of obstaclesisquite

conceivable.Second,thereisa strongneed forglobaloptimizationoftrajectories.Allspace vehicles

are fuellimited,so a prioriidentificationof fuelemcient routesishighlydesirable.

Itisalsoassumed thatobjectsensingand modeling can predictpassivemotions on orbitand can

recognizeregularmotions ofarticulatedpartson the targetplatform,with the helpofthe platform

models suppliedto it. Therefore,the scenarioleadsto the followingrequirementson trajectory

planning by the guidance system:

1. The system generates a trajectory, or route plan, from a given start a given goal position.

2. The trajectory avoids all passive, foreseen obstacles, which may be in motion.

3. The trajectory avoids the platform of interest, which is a composite of different shapes.

3 Approach

The guidance algorithmsmust includeI) trajectoryoptimizationto minimize fuelconsumption,

with orbitalmechanics taken intoaccount,and 2) obstacleavoidance.The generalapproach isto

combine optimizationtechniquesfrom the domain of spacecraftguidance with path planning and

obstacleavoidancetechniquesfrom artificialintelligence(AI).Numerical optimizationtechniques

cannotcope with the constraintexplosionwhich occurswhen more than one or two simpleobstacles

are modeled. AI has severaltechniqueswhich handle multipleobstaclesunder variouslimiting

assumptions,but thesetechniqueshave not been appliedto on-orbitproblems. By prototypingand
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Figure 1: Software Simulation Testbed for Guidance Algorithm Experiments

evaluating algorithms which borrow techniques from both domains, we hope to arrive at a guidance
system for safe, efficient on-orbit maneuvering.

The prototyping experiments are being performed on a Symbolics workstation. Several tools have

been developed or obtained to form a simulation tsstbed for the work. The testbed is illustrated in

Figure 1. The environment of platform and other objects is currently simulated on the Symbolics

using Clohessy-Wiltshire equations for the orbital mechanics, but future experiments will use a

multibody dynamics simulation acquired from NASA Johnson Space Center. This simulation has

been installed on a VAX/UNIX system communicating with the Symbolics via Ethernet. The code

includes a digital autopilot simulation for one of the bodies, which has been configured to match the

MMU and will simulate the robot control and actuation systems for future closed loop experiments.

The simulations generate obstacle state information which is placed in the object knowledge base.
Object shape information is loaded into the base from scenario files. The base controls concurrent

access, so that simulation and planning can occur in separate processes.

The interface for algorithm demonstrations uses the Symbolics S-Geometry package for three dimen-

sional, wire-frame graphical display. While displays have been generated on other, more graphics-

oriented devices, hosting a 3-D display on the development machine was found to be indispensable
for algorithm development and evaluation.

4 Grid Search Algorithm

The first experiment involved modifying a standard AI path planning technique to optimize fuel

on-orbit, rather than the usual optimization of distance in two dimensions. Several AI techniques

may extend to higher dimensionality, such as polyhedral blocks [7], or octrees [4,6] (see [3] for a

survey). A* search [9] on a uniform grid, also called grid search [5,8], was selected for the initial

implementation. This method is one of many which generate a space of points between the start

and goal points. The space is searched for a set of waypoints which, when connected, form a safe,
nearly optimal path from start to goal.
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Table1: Stepsin the A* SearchAlgorithm

loop

Forma queueto holdpartialpathsfromthestart to other endpoints.
Add the null path from start to start to the queue.
If the queue is empty, return, failure to find path.
Remove path P from the front of the queue.
If P reaches the goal, return P as the solution.
Form new paths by extending P toward the neighbors of P's endpoint.
Add the new paths to the queue.
Sort the queue by total cc4t, keeping lower cost paths in the front.
If several paths in the queue have the same endpoint, discard all but the one with least cost.
Repeat from loop.

A* search is based on discrete dynamic programming, which accomplishes breadth-first searching

of a cost-weighted graph to find a shortest path. A* search differs from dynamic programming in
that a heuristic factor is added to the cost function. A partial path's total cost is the sum of the

cost of the path plus a heuristic estimate of the cost remaining from the endpoint of the path to

the goal. The heuristic may render the solution less than optimal, but its use reduces search time.

The algorithm is described in Table 1.

Adapting the grid search to space required new definitions of the cost function, the search space,

the cost heuristic factor, and the grid with its notion of neighbor.

• The goal of minimizing fuel was approximated by using a cost function of magnitude of delta-

v. The robot is assumed to fire its thrusters instantaneously, and only at the grid points.

Moving from point A to point B is modeled as a single burn (thruster firing) at point A, and

the magnitude of the change in velocity at point A is the cost of moving from A to B.

There may be goals imposed on the robot in addition to minimizing fuel. To permit experi-

ments which minimize time or distance as well, the cost function for moving from A to B was

implemented as the weighted sum of 1) magnitude of delta-v, 2) straight line distance, and

3) time duration. The weights are specified as part of the scenario.

• The choice of cost function and the presence of moving obstacles necessitated the use of a

grid in seven dimensional space. Each point is a partial robot body state, including three

dimensions for position, three dimensions for incoming velocity, and one dimension for time.

Another way to view this is that in space, the advantage of being at a certain position depends

upon when you are there, since hazards are in motion, and what your velocity is, since turning

and braking in space are expensive.

A reference frame also had to be chosen for the search space. The NASA simulation employs

an earth-centered inertial frame and has full frame transformation capabilities. AI path

planning is usually terrain based or airborne and uses a local, non-inertial frame. For this

work, a local vertical, local horizontal (LVLH) frame, on orbit and centered on the platform

of interest, was selected. Orbital effects are easily modeled in this fra_ne, and position and

velocity vectors for obstacles and robot are of a scale which the grid search can manage.

• When spatial distance is the grid search cost function, the heuristic cost factor is usually

the straight line distance from path endpoint to the goal. For the on-orbit algorithm, the

195



heuristiccostis computedby solvinga two burn problem, one at the path endpoint and one

at the goal, to reach the goal in a direct (but not necessarily straight line) trajectory.

A uniform grid and a definition of the neighbors to each point was needed for the seven

dimensional search space. In two spatial dimensions it is sufficient to specify a resolution

distance d to achieve a uniform grid. All points (id, jd) for integer i and j are on the grid. A

point's neighbors are usually declared to be any point on the grid less than 2d distance from

the point (8 neighbors) or ld distance away (4 neighbors). This is easily extended to three

spatial dimensions. If it is extended to the fourth dimension of time by the declaration of a

time resolution t, however, so that neighbors are, say, ld distance away and It time away,

the effect is to fix the speed of robot to the one value d/t. This is undesirable for an on-orbit
robot.

Many schemes are possible which result in a uniform grid in seven dimensions, a small number

of neighbors for each point, and a variable speed robot. For the first experiment, a uniform
grid was defined in four dimensions in terms of distance resolution d and time resolution t.

A point was defined to be on a grid in seven dimensions if it was on the space/time grid and

its velocity was one of the set of velocities achievable by arriving from a neighboring point.
A point's neighbors were defined to be all those grid points in two sets:

- those time t away and any distance away, subject to limits on maximum robot speed
and maximum instantaneous delts,-v magnitude, and

- those points distance less than 2d away and any time away, subject to limits on minimum

robot speed and maximum instantaneous delta-v magnitude.

For example, assume t and d are 1, the robot is stopped at point (0, 0, 0) at time 0, and
robot speed may vary from .4 to 2.5. Ignore limits on delta-v magnitude. Then the robot

may move to (1, 0, 0) at times 1 or 2 (with speed 1 or .5), or to point (2, 0, 0) at time 1

(with speed 2), but not to point (1, 0, 0) at time 3 or point (3, 0, 0) at time 1, since robot

speed limitations are exceeded. As another example, assume that robot speed is limited to

be between 1 and 1.9. Then the neighbors of (0, 0, 0) at time 0 are the 26 points (i, j, k) at
time 1, where i, j, and k are -1, 0, or 1, but not all 0.

5 Experimental Evaluation of the Algorithm

Table 2 summarizes the characteristics of a test scenario. A robot is directed to move to a point

near one module of the space station for an inspection. An obstacle is moving by the station. This

is unrealistic, but was included to test the ability of the robot to avoid moving obstacles. The

robot has no velocity initially in the station-centered local frame. The goal points always have a
zero desired velocity as well. The search occurs on a grid with 6 foot, 60 second resolution. The
runs were arbitrarily limited to 6 hours of execution time.

The goal points all have a zero desired velocity and no specified arrival time. It was discovered that

the algorithm can achieve a goal position and velocity at a reasonable time, if no arrival time is

specified. This behavior is obtained by not testing for compliance with a goal time and by making a
slight adjustment to the cost heuristic. In the first case, the two-burn problem for the cost heuristic

consists of finding two delta-v's to move from a neighbor state (position, velocity, time) to a goal
state (position, velocity, time). In the second case, the two-burn problem is modified to motion
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Table 2: Characteristics of the Test Scenario

Objects

Platform Modeled after Space Station

14 Component objects: cylinders and rectahedrons

Obstacle Cylinder, moving

Robot Displayed as cylinder, modeled as sphere

.09 feet/second minimum speed

.19 feet/second maximum speed

.2 feet/second maximum single delta-v magnitude
0 initial velocity

0 goal velocity

Sc ale

Grid resolution 6 feet distance

60 seconds time

from a neighbor state (position, velocity, time) to a partial goal state (position, velocity). Since

this is not sufficiently constrained to yield a single solution, the constraint is added that the goal

time, for the one cost evaluation only, is set equal to the distance from neighbor to goal divided

by the magnitude of the neighbor point's velocity. Effectively, the heuristic assumes that the robot

will continue directly to the goal position at roughly its current speed.

Several experiments were performed to see how grid search would behave on the scenario for various

goal points and cost function weighting schemes. The cost function for these runs was the weighted

sum of the total delta-v and the total distance (time was not considered). The results are given in

Tables 3 and 4. The path identified by the algorithm for the goal (8.667, -0.667, 9.833) and delta-v

and distance both weighted 1 is illustrated in Figure 2. To summarize the results, the algorithm

takes a very long time to find an obstacle free, fairly expensive trajectory.

To understand why the A* algorithm is taking so long, consider two points. First, a dynamic

programming algorithm, without the cost heuristic, will not work in a domain where the robot may

move from point to point without incurring cost. In space, the algorithm will establish a starting

velocity for the robot, and will then head off forever in the direction of that velocity. It will have

discovered a zero cost path of ever-increasing length, which it considers superior to all other paths

requiring some delta-v. This does not happen in two spatial dimensions with a distance-based cost

function, because it is not possible to move from point to point without incurring some cost (it

is also true that dynamic programming in two dimensions is usually constrained to stay between

the start and goal points on one dimension). The A* algorithm does not head off forever on a

free trajectory. However, it still prefers to explore passive trajectories once initial velocity has been

established, and the cost heuristic does not affect path evaluations enough to counter this effect

until a great deal of exploration has occurred.

Second, for the on-orbit problem, the search space is very large. The seven dimension space and the

desire for a variable speed robot lead to many neighbors at each point. A limit on the magnitude

of the delta-v allowed at each point helps somewhat, but not enough.
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Table3: Number of Points Searched during Grid Search

I Cost Function Weight,: Delt_-v 0.0 ] 1.0 ] 1.0 I 1.0 I 1.0Goal Distance 1.01 1.01 0.5 I o.1 I o.o
<1 2.167 0> 18 73 127 538 1883

<I 4 I> 67 274 492 2351 11,217
<8.667-.667 9.833> 1560 33,361 * * *

* Indicates run did not complete within 6 hours.

The start, <0 0 0>, and goals are in grid-relative coordinates.

Table 4: Total Delta-V for Paths Identified by Grid Search

Cost Function Weights: Delta-v I 0.0 [ 1.0[ 1.0 I 1.0 I 1.0 1
Goal Distance ] 1.0[ 1.0 I 0.5 I 0.1 [ 0.0[

<1 2.167 0> 0.355 0.355 0.355 0.333 0.333

<1 4 1> 0.485 0.420 0.420 0.420 0.420
<8.667-.667 9.833>** 0.872 0.870 * * *

* Indicates run did not complete within 6 hours.

** For comparison, total delta-v for a three-burn, obstacle free trajectory was 0.404.
The start, <0 0 0>, and goals are in grid-reLative coordinates.
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Figure 2: Path Identified by the

Grid Search Algorithm

Figure 3: Approach to Obstacle Avoidance

Permits Collisionson a Coarse Grid

198



The sizeof the search space in combination with the lack of tightfocus on the goal makes the

identificationof paths ofmore than fiveburns unfeasible.In fact,the number of pointsevaluated

grows exponentiallywith the number ofwaypoints in the path. The searchproblem isNP-hard,

which means thatorder-of-magnitudeimprovements incomputing hardware willonlymake a small

dent in the performance problem.

However, guidance engineershave been quick to point out that the problem of Figure 2 could

probably be solvedwith two or three burns. To verifythis,a threeburn, obstaclefreetrajectory

was proposed by viewing the scenarioand selectingan intermediatewaypoint above the modules.

Simulation of the trajectoryrevealedthat itstotaldelts-vwould be halfthat of the trajectory

identifiedby the A* search.13 burns isa needlesslycomplicatedand suboptimal solution.

This suggeststhat a coarsergridmay be appropriate.Unfortunately,there isan upper limitto

gridresolutionwhich isimposed indirectlyby the approach to obstacleavoidance. Obstacles are

avoided by testingfor robot-obstacleintersectionsat the statesdefinedby the grid points. No

considerationisgiven to whether the trajectoriesbetween gridpointsintersectobstacles.This is

perfectlyacceptableifthe gridpointsareclosetogethercompared to the sizesand relativevelocities

of robot and obstacles.Ifthe gridpointsare too farapart,the planner may promote a trajectory

which appears safeat the waypoints,but which willinfactleadto a collision(seeFigure 3).

Therefore,the conclusionfrom the firstexperiment was thata second algorithmwas needed which

would employ coarsergridsand considerobstacleavoidanceover the trajectories,not just at the

gridpoints.

6 Proposed Second Experiment

The second experiment willutilizenumerical techniquesforcollisiontestingand willassume that

most trajectoriesare accomplished efficientlywith a small number of burns. The approach isto

solvea two burn problem for an optimal trajectory,and ifthe resultingtrajectoryfailsto avoid

obstacles,to move to successivelymore burns. The timing and locationof additionalburns will

be identifiedby searchingforburn pointson a gridwhich isscaledto the currenttotalnumber of

burns. Thus the searchwillretainaspectsof a gridsearch,but willoccur on a sequence ofgridsof

increasinglyfinerresolution.

Obstacle trajectories and robot trajectory segments between burns will be represented by polyno-

mials. Collisions will be detected by testing the polynomials for intersection. Previous experiments

indicate that obstacles which must be avoided in space can be modeled as circumscribing spheres

and their entire vicinity avoided. Thus it should be possible to describe passive, spherical obstacles

trajectories mathematically.

The platform of interest, on the other hand, must be modeled in more detail. Converting complex,

moving shapes into mathematical representations is generally not feasible. However, by restricting

the platform to be unarticulated and by employing a platform-relative reference frame, we can

transform robot-platform collision testing into comparing a robot trajectory to a set of stationary

shapes.
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7 Conclusions

This project has demonstrated the potential for combining trajectory optimization and AI path

planning for on-orbit robotic guidance. It has clarified several issues about algorithm design which

require further investigation. In particular, it remains to be seen whether critical assumptions about

the on-orbit scenario can be made which circumvent the combinatorial explosion in computation

time. This explosion plagues all approaches to path optimization with obstacle avoidance.

This effort has also revealed several other directions for work in support of autonomous space

robotics, including further analysis of requirements for servicing scenarios and development of

functionality outside of predictive planning for free-flying guidance. In particular, research is needed

on sensing, obstacle modeling, and reactive planning in conjunction with robot control.
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