38 research outputs found

    A robust boson dispenser: Quantum state preparation in interacting many-particle systems

    Get PDF
    We present a technique to control the spatial state of a small cloud of interacting particles at low temperatures with almost perfect fidelity using spatial adiabatic passage. To achieve this, the resonant trap energies of the system are engineered in such a way that a single, well-defined eigenstate connects the initial and desired states and is isolated from the rest of the spectrum. We apply this procedure to the task of separating a well-defined number of particles from an initial cloud and show that it can be implemented in radio-frequency traps using experimentally realistic parameters.Comment: 10 pages, 9 figure

    Coherent transport of holes in microtap arrays

    Get PDF
    Realitzat en col路laboraci贸 amb el Dept. F铆sica (UAB)Treball final de m脿ster oficial fet en col路laboraci贸 amb Universitat Aut貌noma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ci猫ncies Fot貌niques (ICFO

    Twonniers: Interaction-induced effects on Bose-Hubbard parameters

    Get PDF
    We study the effects of the repulsive on-site interactions on the broadening of the localized Wannier functions used for calculating the parameters to describe ultracold atoms in optical lattices. For this, we replace the common single-particle Wannier functions, which do not contain any information about the interactions, by two-particle Wannier functions ("Twonniers") obtained from an exact solution which takes the interactions into account. We then use these interaction-dependent basis functions to calculate the Bose--Hubbard model parameters, showing that they are substantially different both at low and high lattice depths, from the ones calculated using single-particle Wannier functions. Our results suggest that density effects are not negligible for many parameter ranges and need to be taken into account in metrology experiments.Comment: 6 pages, 3 figure

    Shaken not stirred: Creating exotic angular momentum states by shaking an optical lattice

    Get PDF
    We propose a method to create higher orbital states of ultracold atoms in the Mott regime of an optical lattice. This is done by periodically modulating the position of the trap minima (known as shaking) and controlling the interference term of the lasers creating the lattice. These methods are combined with techniques of shortcuts to adiabaticity. As an example of this, we show specifically how to create an anti-ferromagnetic type ordering of angular momentum states of atoms. The specific pulse sequences are designed using Lewis-Riesenfeld invariants and a four-level model for each well. The results are compared with numerical simulations of the full Schroedinger equation.Comment: 20 pages, 8 figure

    Transport of ultracold atoms between concentric traps via spatial adiabatic passage

    Get PDF
    Spatial adiabatic passage processes for ultracold atoms trapped in tunnel-coupled cylindrically symmetric concentric potentials are investigated. Specifically, we discuss the matter-wave analogue of the rapid adiabatic passage (RAP) technique for a high fidelity and robust loading of a single atom into a harmonic ring potential from a harmonic trap, and for its transport between two concentric rings. We also consider a system of three concentric rings and investigate the transport of a single atom between the innermost and the outermost rings making use of the matter-wave analogue of the stimulated Raman adiabatic passage (STIRAP) technique. We describe the RAP-like and STIRAP-like dynamics by means of a two- and a three-state models, respectively, obtaining good agreement with the numerical simulations of the corresponding two-dimensional Schr\"odinger equation.Comment: 13 pages, 6 figure

    Spin and Orbital angular momentum propagation in anisotropic media: theory

    Full text link
    This paper is devoted to study the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with a general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing the space-variant-optical-axis phase plates

    Entanglement in spatial adiabatic processes for interacting atoms

    Get PDF
    We study the dynamics of the non-classical correlations for few atom systems in the presence of strong interactions for a number of recently developed adiabatic state preparation protocols. We show that entanglement can be created in a controlled fashion and can be attributed to two distinct sources, the atom-atom interaction and the distribution of atoms among different traps.Comment: 9 pages, 3 figure
    corecore