925 research outputs found

    Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs

    Full text link
    The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.Comment: 14 pages, 2 figure

    Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces

    Get PDF
    A new purification scheme is proposed which applies to arbitrary dimensional bipartite quantum systems. It is based on the repeated application of a special class of nonlinear quantum maps and a single, local unitary operation. This special class of nonlinear quantum maps is generated in a natural way by a hermitian generalized XOR-gate. The proposed purification scheme offers two major advantages, namely it does not require local depolarization operations at each step of the purification procedure and it purifies more efficiently than other know purification schemes.Comment: This manuscript is based on results of our previous manuscript 'Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces

    On the visualization of universal degeneracy in the IMRT problem

    Get PDF
    BACKGROUND: In general, the IMRT optimisation problem possesses many equivalent solutions. This makes it difficult to decide whether a result produced by an IMRT planning algorithm can be further improved, e.g. by adding more beams, or whether it is close to the globally best solution. RESULTS: It is conjectured that the curvature properties of the objective function around any globally optimum dose distribution are universal. This allows an assessment of optimality of dose distributions that are generated by different beam arrangements in a complementary manner to the objective function value alone. A tool to visualize the curvature structure of the objective function is devised. CONCLUSION: In an example case, it is demonstrated how the assessment of the curvature space can indicate the equivalence of rival beam configurations and their proximity to the global optimum

    Sequential Quantum Cloning

    Get PDF
    Not all unitary operations upon a set of qubits can be implemented by sequential interactions between each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning 1->M and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In particular, we obtain D = 2M for symmetric universal quantum cloning and D = M+1 for symmetric phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in each step of the sequential procedure for both cases.Comment: 4 pages, no figures. New version with changes. Accepted in Physical Review Letter

    On Soliton-type Solutions of Equations Associated with N-component Systems

    Full text link
    The algebraic geometric approach to NN-component systems of nonlinear integrable PDE's is used to obtain and analyze explicit solutions of the coupled KdV and Dym equations. Detailed analysis of soliton fission, kink to anti-kink transitions and multi-peaked soliton solutions is carried out. Transformations are used to connect these solutions to several other equations that model physical phenomena in fluid dynamics and nonlinear optics.Comment: 43 pages, 16 figure

    Class of PPT bound entangled states associated to almost any set of pure entangled states

    Full text link
    We analyze a class of entangled states for bipartite d⊗dd \otimes d systems, with dd non-prime. The entanglement of such states is revealed by the construction of canonically associated entanglement witnesses. The structure of the states is very simple and similar to the one of isotropic states: they are a mixture of a separable and a pure entangled state whose supports are orthogonal. Despite such simple structure, in an opportune interval of the mixing parameter their entanglement is not revealed by partial transposition nor by the realignment criterion, i.e. by any permutational criterion in the bipartite setting. In the range in which the states are Positive under Partial Transposition (PPT), they are not distillable; on the other hand, the states in the considered class are provably distillable as soon as they are Nonpositive under Partial Transposition (NPT). The states are associated to any set of more than two pure states. The analysis is extended to the multipartite setting. By an opportune selection of the set of multipartite pure states, it is possible to construct mixed states which are PPT with respect to any choice of bipartite cuts and nevertheless exhibit genuine multipartite entanglement. Finally, we show that every kk-positive but not completely positive map is associated to a family of nondecomposable maps.Comment: 12 pages, 3 figures. To appear in Phys. Rev.

    Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole

    Get PDF
    The flavonoid components of New Zealand mānuka (Leptospermum scoparium) honey have been quantified in a series of 31 honeys of varying non-peroxide antibacterial activity to clarify discrepancies between previous studies reported in the literature. Total flavonoid content was 1.16 mg/100 g honey. The principal flavonoids present were pinobanksin, pinocembrin, luteolin and chrysin and together these represented 61% of the total flavonoid content. 1, 2-formyl-5-(2-methoxyphenyl)-pyrrole, which was weakly correlated with the non-peroxide antibacterial activity, was isolated from the flavonoid fraction and separately synthesised. 1 did not display inhibitory activity against Staphylococcus aureus in vitro and thus the origin of the correlation, which is still unknown, is not a direct contribution

    Optimal copying of entangled two-qubit states

    Full text link
    We investigate the problem of copying pure two-qubit states of a given degree of entanglement in an optimal way. Completely positive covariant quantum operations are constructed which maximize the fidelity of the output states with respect to two separable copies. These optimal copying processes hint at the intricate relationship between fundamental laws of quantum theory and entanglement.Comment: 13 pages, 7 figure

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    Elastic Interfacial Waves in Discrete and Continuous Media

    Get PDF
    Phonon spectra of bicrystals with relaxed grain-boundary structure display a variety of localized modes including long-wavelength acoustic modes. Continuum solutions for localized waves that incorporate atomic-level elastic properties of the interface via discontinuity relations agree well with the latter modes. In contrast, classical solutions that depend only on bulk elastic properties do not. This demonstrates that the distinct atomic structure of the interface is a controlling factor, and it is shown how local, atomic-level properties can be incorporated into continuum analyses of interfacial phenomena
    • 

    corecore