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Elastic Interfacial Waves in Discrete and Continuous Media

Abstract
Phonon spectra of bicrystals with relaxed grain-boundary structure display a variety of localized modes
including long-wavelength acoustic modes. Continuum solutions for localized waves that incorporate atomic-
level elastic properties of the interface via discontinuity relations agree well with the latter modes. In contrast,
classical solutions that depend only on bulk elastic properties do not. This demonstrates that the distinct
atomic structure of the interface is a controlling factor, and it is shown how local, atomic-level properties can
be incorporated into continuum analyses of interfacial phenomena.
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Elastic interfacial waves in discrete and continuous media

E. S. Alber and J. L. Bassani
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

V. Vitek and G. J. Wang
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 30 May 1995!

Phonon spectra of bicrystals with relaxed grain-boundary structure display a variety of localized modes
including long-wavelength acoustic modes. Continuum solutions for localized waves that incorporate atomic-
level elastic properties of the interface via discontinuity relations agree well with the latter modes. In contrast,
classical solutions that depend only on bulk elastic properties do not. This demonstrates that the distinct atomic
structure of the interface is a controlling factor, and it is shown how local, atomic-level properties can be
incorporated into continuum analyses of interfacial phenomena.

I. INTRODUCTION

Distinct grain-boundary structure gives rise to local prop-
erties that are significantly different from those in the bulk.
In this paper we demonstrate the strong interplay between
structure, local elastic properties, and long-wavelength inter-
face waves. For this purpose we have considered crystallo-
graphically identical grain boundaries in gold and copper,
two fcc metals with nearly identical bulk anisotropy, and find
that the localized phonons are strikingly different. For ex-
ample, the long-wavelength acoustic phonons are highly lo-
calized in gold but not at all in copper, while traditional
elasticity solutions essentially cannot distinguish the inter-
face waves in these two materials.

Phonons, i.e., elementary harmonic excitations in solids,
can reveal important information about structure and proper-
ties of interfaces. This has been fully recognized in the case
of surfaces1,2 and a general finding is that surface relaxation/
reconstruction must be accounted for to attain agreement be-
tween experimental observations and lattice-dynamical
calculations.3 Studies of phonons at internal interfaces, such
as grain boundaries, are rather rare,4 presumably because
techniques for direct measurements of phonons at such inter-
faces are less developed. On the other hand, the propagation
of elastic waves along interfaces separating two continua has
been analyzed extensively.5,6 However, in these studies nei-
ther the structure nor properties of the interface are taken into
account; the interface is simply regarded as a surface across
which bulk properties are discontinuous but tractions and
displacements are continuous~perfect bonding condition!. A
significant feature of these solutions is that the condition for
the existence of localized interface waves at subsonic veloci-
ties ~i.e., below the minimum velocity for bulk waves! with
the perfect-bonding assumption is rather restrictive.6–9These
solutions will be referred to as Stoneley waves. Related pho-
non calculations10,11 that neglect relaxation at grain bound-
aries reached similar conclusions, as one would expect.

In this paper we present calculations of phonons for the
S55 ~12̄0!/@001# symmetrical tilt boundary~misorientation
36.9°! in both gold and copper. We concentrate on long
wavelengths and identify acoustic phonons corresponding to

interfacial waves propagating parallel to the interface. For
the propagation direction along the tilt axis Stoneley-type
solutions exist while for propagation perpendicular to the tilt
axis they do not; since gold and copper have very similar
bulk anisotropies, the ‘‘perfect bonding’’ solutions are nearly
the same for each.9 In contrast, interface phonons are quite
different for gold and copper. We show that continuum
analyses can reproduce the long-wavelength interfacial
phonons only if the elastic properties of the relaxed grain-
boundary structure12 are explicitly included.

II. GRAIN-BOUNDARY STRUCTURES

Calculations presented in this paper have been made for
the S55 ~12̄0! symmetrical tilt boundary with the rotation
axis @001# corresponding to the misorientation 36.9°. The
smallest planar repeat cell of this boundary is delineated by
the vectors@001# and @210#. The bicrystal containing this
boundary was first constructed geometrically using the coin-
cidence site lattice theory.13 The atomic structure of this
boundary was then determined by minimizing the energy of
the bicrystal using a molecular statics method which does not
employ periodic boundary conditions in the direction normal
to the boundary and simultaneously allows for both the local
atomic relaxations and relative rigid-body displacements of
the adjoining grains.14 In these calculations, as well as when
constructing the force constants matrix for the phonon stud-
ies, we have employed Finnis-Sinclair central force many-
body potentials for gold and copper15,16 which have been
fitted to reproduce the lattice parameter, elastic moduli, co-
hesive energy, and vacancy formation energy. These poten-
tials are analogous to the embedded atom method17,18 and
their functional form was determined on the basis of the
second moment of the density of states approximation to the
tight-binding method with orbital charge neutrality.19

Two alternate structures of this boundary have been
found, as in previous pair-potential calculations,20,21 and
these are shown in Figs. 1~a! and 1~b!. In the following we
denote these structuresB andB8, respectively. However, un-
like in the pair-potential studies where both structures were
found to be metastable, theB8 structure in gold is unstable
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and theB structure in copper is unstable. This has been ex-
posed unambiguously in calculations of phonons for theB8
structure in gold andB structure in copper which show that
some of the phonon frequencies are imaginary.22,23This im-
plies that the atomic structures of theS55 ~12̄0!/@001#
boundaries are not the same in gold and copper:B is a
stable structure in gold andB8 in copper.

III. GRAIN-BOUNDARY PHONONS

The phonon calculations have been made using the slab
method similar to that commonly employed in surface pho-
non studies.3 The repeat cell was defined by vectorsa@210#,
a@001#, and 12a@12̄0#, wherea is the lattice parameter, and
it contains two boundaries of the above-mentioned type
separated by 13.4a. The atomic positions within the repeat
cell were those determined by the molecular statics calcula-
tion and no additional relaxation of the three-dimensionally
~3D! periodic structure has been carried out. The reciprocal
lattice in the~24̄0! plane is body centered tetragonal and has
the basis vectors~1/a!@002# and ~2/5a!@210#. It is shown
together with the corresponding Brillouin zone in Fig. 2.
Using the usual notation, the calculations were carried out
for wave vectors parallel to the vectorsGX5~1/5a!@210# and
GY5~3/10a!@002#. In the numerical calculationsGX and

GY were divided into twenty steps.
The phonon dispersions calculated for the slab containing

the grain boundary in gold~B structure! are shown in Fig.
3~a! and those for the grain boundary in copper~B8 structure!
in Fig. 4~a!. In order to illustrate the connection between
bulk and slab dispersion curves, calculations of slab-adapted
bulk spectra24 have also been made in which the same repeat
cell as in the case of grain boundaries is used for the ideal fcc
lattice. In these spectra, shown in Figs. 3~b! and 4~b!, there
are 360 modes for each value ofk because the cell contains
120 atoms. Since there are just three acoustic modes for each
wave vector in the case of the smallest repeat cell of the ideal
fcc lattice, the multiplicity of modes for the bulk crystal cor-
responds to the well-known folding of the Brillouin zone.25

In the case of grain boundaries the lowest frequency
modes lie below those of the bulk, i.e., the so-called ‘‘peeling
off’’ of the lowest frequency modes occurs. New modes with
frequencies higher than any of the phonon frequencies in the
bulk appear and, finally, vibrational modes fill gaps of the
spectrum for the ideal crystal. This is similar to what has
been observed in the case of surfaces.3,26 The low-frequency
peeled-off modes are acoustic~v→0 as uku→0! while the
new high frequency modes are optical and arise because
there are nonequivalent atoms in the repeat cell owing to the
boundary region. While the phonon spectra are qualitatively
similar for gold and copper the ‘‘peel off’’ of the acoustic
modes is less pronounced and optical phonons much more
limited in the case of copper.

Since the goal of this paper is to discuss the link between
lattice dynamics and continuum studies of interfacial waves
we analyze in detail the long-wavelength acoustic modes.
For this purpose Table I summarizes velocities of the long-
wavelength acoustic phonons in ideal lattices of gold and
copper for thek vectors parallel to@210# ~GX! and @001#
~GY! directions, respectively. These velocities,v, were de-
termined on the basis of phonon dispersions shown in Figs.
3~b! and 4~b! using the formulav5dv/duku. They are in an
excellent agreement with the wave velocities calculated us-
ing the anisotropic elasticity theory.9

In order to investigate the spatial variation of these vibra-
tions we display the real parts of the amplitudes of the
lowest-frequency modes for different~24̄0! layers in the re-

FIG. 1. Atomic structure of theS55 ~12̄0!/@001# projected onto
the ~001! plane.~a! B structure in gold;~b! B8 structure in copper.
The white and dark circles represent atoms belonging to two differ-
ent ~002! planes in the@001# period.

FIG. 2. The reciprocal lattice in the~24̄0! plane and the corre-
sponding Brillouin zone.
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peat cell.~The amplitudes are real fork50 and thus their
imaginary parts must be small whenuku→0.! The two grain
boundaries present in each repeat cell are positioned in the
vicinity of layers 30 and 90, respectively. The real parts of
the amplitudes of the first fifteen lowest frequency modes
corresponding tok5GY/20 andk5GX/20 are shown for the
case of gold~B structure! in Figs. 5~a! and 5~b!, respectively.
The abscissa of these and following plots denotes the number
of a particular~24̄0! layer in the repeat cell. The three com-
ponents of the vibrational amplitudes in the directions@210#,

@001#, and @12̄0# are denoted by the symbols3, h, andn,
respectively~here, and again below, we note that these three
directions correspond tox1, x2, andx3, respectively, in the
continuum analyses that follow!. For three of these modes, 1,
2, and 9 in the case ofGY and 1, 2, and 6 forGX, the
dominant directions of vibrations have the largest amplitudes
in the boundary region, minimum amplitudes between the
boundaries and the amplitudes have the same sign at the two
boundaries present in the repeat cell. This indicates localiza-

FIG. 3. Phonon dispersions for~a! the bicrystal of gold contain-
ing S55 ~12̄0! tilt boundary with theB structure and~b! the perfect
lattice of gold.

FIG. 4. Phonon dispersions for~a! the bicrystal of copper con-
taining S55 ~12̄0! tilt boundary with theB8 structure and~b! the
perfect lattice of copper.

8400 53E. S. ALBER, J. L. BASSANI, V. VITEK, AND G. J. WANG



tion of these waves at the boundaries; the reason why their
amplitudes are also significant in the bulk is the use of peri-
odic boundary conditions in the direction perpendicular to
the boundary. Most of the other modes also display largest
vibrational amplitudes in the boundary regions, but in some
cases these are of opposite sign at the two boundaries present
in the repeat cell~e.g., 3,4,5 in the case ofGY! or additional
maxima~minima! of the same magnitude occur in the region
between the boundaries~e.g., 7,8,10–15 in the case ofGY!.
This suggests that these are in fact bulklike modes modified
by the presence of the boundaries. They correspond to the
wave vectork5GY/201nK3, where260,n<60 is an inte-
ger andK3 the reciprocal lattice vector in the@12̄0# direction
the magnitude of which is 1/u12a@12̄0#u; i.e., k is the wave
vector from the folded Brillouin zone of the perfect crystal.
Modes of this type represent waves propagating in a direc-
tion inclined to the boundary plane. They are bulklike and
their deviation from the bulk modes in the ideal lattice is
merely a consequence of the imposed configuration and pe-
riodicity of the repeat cell. In contrast, the modes 1, 2, and 9
in the case ofGY and 1, 2, and 6 forGX correspond ton50
and represent waves propagating parallel to the boundary
plane.

Since in this paper we are interested in waves propagating
along the interfaces we always select three lowest frequency
modes whose dominant directions of vibrations have the
largest amplitudes of the same sign in the boundary regions
and minimum amplitudes between the boundaries. These are
the modes that will be compared to localized continuum
waves. The real parts of the amplitudes for such modes cor-
responding tok5GY/20 andk5GX/20 are shown for the
case of gold~B structure! in Figs. 6~a! and 6~b!, respectively,
and for the case of copper~B8 structure! in Figs. 7~a! and
7~b!, respectively. The characteristics of these vibrational
modes are summarized in Table II.

A common feature of the waves propagating along the
S55 ~12̄0! boundary is that for each direction the lowest
velocity waves are subsonic, i.e., they propagate slower than
the lowest bulk wave~shear! velocity in that direction. This
is the case for both gold and copper, but other important
features are different in these two materials. First, while the
lowest velocity waves are of the same shear type for theGX
direction, i.e., vertical shear, for theGY direction the lowest
velocity wave in gold corresponds to the horizontal shear
while in copper to the vertical shear. However, the most pro-
nounced difference is found in the localization of the waves.
They are well localized in gold where their amplitudes are

largest in the boundary region and decay away from the in-
terface. In contrast, in copper the localization is very weak
and the amplitude of the waves is virtually the same for all
the atoms in the block. This suggests that the long-
wavelength vibrations propagating parallel to the interface
depend strongly on the local interface structure. If they did
not, these modes would be similar in gold and copper since
the cubic anisotropy of the bulk elastic moduli of these two
materials is quite similar. Furthermore, the same modes
would also exist for the unrelaxed structures and would re-
semble continuum elasticity solutions of the Stoneley type5

which decay exponentially away from the interface. These
elastic solutions are rather restrictive even in terms of their
existence6 and, as will be discussed below, for theS55
~12̄0! boundary Stoneley waves can propagate parallel to the
tilt axis ~@001#! but not perpendicular to the tilt axis~@210#!.
This is obviously inconsistent with phonon results. This and
other incongruities between the phonon calculations and
common continuum mechanics solutions are the motive for
the development of the mechanical models of interfaces dis-
cussed in the following section.

IV. CONTINUUM ANALYSES

The long-wavelength, low-frequency vibrations~pho-
nons! propagating parallel to and rapidly decaying away
from the interface depend strongly on the local interface
structure, as they do in the case of surface phonons. Below
we develop a continuum model that incorporates the local
elastic properties of the interfacial region, those that have
been calculated for relaxed structures,12,27 and thereby re-
solves discrepancies between the calculated phonons and tra-
ditional continuum elasticity solutions that neglect interface
properties. The continuum solutions are for joined half-
spaces, whereas the phonon calculations are for superlattices
where each layer~crystal! has a finite thickness. Neverthe-
less, when the waves are localized in the region of the grain
boundaries, as they are for the results shown in Figs. 6 and 7,
one anticipates for wavelengths sufficiently less than the
boundary spacing that the main features of such waves in
that region are not affected significantly by the neighboring
boundaries. This is found in the case of the calculated
phonons. For a symmetrical bicrystal superlattice, with equal
thickness of each layer, formed by tilt about a cube axis, this
is precisely the case for the continuum solutions. The proof
will be given in a subsequent paper.

Imagine an inhomogeneous interfacial layer of average
thickness 2h separating two perfect crystals. A simple ideali-
zation of this inhomogeneity is obtained by relating jumps in
field quantities across the surface between two bulk materials
which involve interface constitutive properties. For example,
a springlike idealization takes the tractions on the interface to
be continuous, as in the case of perfect bonding, but dis-
placement jumps are permitted.28 If those jumps are linearly
related to tractions, with@ # denoting a jump in field quantity
across an interface with normaln, then

@s•n#50, ~1a!

@u#52hM̂ I
•s•n. ~1b!

TABLE I. Velocities ~in 103 m/sec! of acoustic waves in the
bulk calculated from phonon dispersion curves.

Gold Copper

Wave vector in@210# direction
1.10 2.07
1.47 2.90
3.25 4.79

Wave vector in@001# direction
1.47 2.90
1.47 2.90
3.10 4.34
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FIG. 5. The amplitudes of the first fifteen lowest frequency modes for the case of gold~B structure! corresponding to~a! k5GY/20 and
~b! k5GX/20.
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An expression for the interface compliance matrixM̂ ih
I is

derived below in terms of the effective properties of the layer
that can be computed for the discrete, atomic system.12 The
caret is used to distinguish this second-order tensor~or 333
matrix! from the fourth-order tensors of elastic compliance
denotedM below. ~Many examples of spring models de-
scribing interfacial behavior can be found in the
literature.28–30!

Consider a 3D inhomogeneous elastic layer of thickness
2h, in particular one with properties varying in the direction
normal to the layer~x3!, subject to traction boundary condi-
tionsTi5s̄3i on x356h ands̄ab50, a, b51,2, where over-
bars denote volume averages. Integrating the stress-strain re-
lation 2« i35ui ,31u3,i52Mi3kl(x3)skl with respect tox3,
whereM denotes the fourth-order tensor of elastic compli-
ance, and assuming that the stress in the layer is uniform and
equal to the average stress~Reuss approximation!, gives

Dui[ui u2h
h

5~22d i3!S E
2h

h

Mi3k3~x3!dx3Dsk3 ~no sum on i !.

~2!

In this case~or more generally when the stress is only inde-
pendent ofx3! the direct volume average of Hooke’s law
« i35Mi3kl(x3)skl leads to the identification of the integral

in ~2! with 2hMi3kl* (h), whereM* is the tensor of effective
compliances that relates the average stress to the average
strain in the heterogeneous layer.31 Then comparing Eqs.
~1b! and ~2!

M̂ ik
I 5~22ei•n!Mi jkl* ~h!njnl ~no sum on i !, ~3!

whereM* is the tensor of effective interface compliances; its
inverse is the effective moduliC* which, for the results pre-
sented below, will be taken from calculations of relaxed
grain-boundary structures.12,27Note, in general, thatM̂ I may
not be symmetric, although in the examples considered be-
low it essentially is symmetric.

Next consider two semi-infinite bulk materials with linear
elastic moduli~fourth-order tensors! C~1! for n•x.0 andC~2!

for n•x,0 joined by the spring conditions~1! along a planar
interfacen•x50 wheren is the unit normal to the interface.
Interface wave solutions are sought in terms of the displace-
ment fields given in each half-space in the formu5af ~m•x
1pn•x2vt! wherem and n are orthogonal vectors andp
and a are eigenvalues and eigenvectors determined from
equilibrium considerations in terms of the Stroh matrices
Q5m•C•m, R5m•C•n, andT5n•C•n and the wave veloc-
ity v. LetP be the diagonal matrix of eigenvaluesp andA be
the matrix of corresponding eigenvectorsa associated with
equation6,12

FIG. 6. The amplitudes of three low-
frequency interfacial modes for theB structure in
gold and the wave vectors parallel to~a! GY
~@001#! and ~b! GX ~@210#!.
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FIG. 7. The amplitudes of three low-
frequency interfacial modes for theB8 structure
in copper and the wave vectors parallel to~a! GY
~@001#! and ~b! GX ~@210#!.

TABLE II. Acoustic phonon modes localized in the grain boundary for wave vectors parallel to theGX
~@210#! andGY ~@001#! directions. Velocities normalized by the corresponding minimum bulk velocity~from
Table I! are given in parentheses.

Gold Copper

Dominant
direction of
vibrations Character

Velocity
~103 m/sec!

Dominant
direction of
vibrations Character

Velocity
~103 m/sec!

Wave vector parallel toGX ~@210#! Wave vector parallel toGX ~@210#!
@12̄0# Vertical shear

wave
1.06

~0.96!
@12̄0# Vertical shear

wave
2.01

~0.97!
@001# Horizontal

shear wave
1.45

~1.32!
@001# Horizontal

shear wave
2.95

~1.43!
@210# Longitudinal

wave
3.25

~2.95!
@210# Longitudinal

wave
4.73

~2.29!

Wave vector parallel toGY ~@001#! Wave vector parallel toGY ~@001#!
@210# Horizontal

shear wave
1.38

~0.94!
@12̄0# Vertical shear

wave
2.86

~0.99!
@12̄0# Vertical shear

wave
1.54

~1.05!
@210# Horizontal

shear wave
2.94

~1.01!
@001# Longitudinal

wave
3.15

~2.14!
@001# Longitudinal

wave
4.39

~1.51!
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$Q2rv2I1p~R1RT!1p2T%•a50. ~4!

The general solutionsf are constructed using the interface
conditions~1! which introduce the only length scale in the
problem,h, and lead to dispersive waves. For harmonic so-
lutions, f (j)5eikj, waves propagate in the direction ofm
and displacements decay exponentially in the direction ofn
if Re(p( i ))50, Im~p~1!!.0, and Im~p~2!!,0. The correspond-
ing displacement and traction fields in the two half-spaces
are forn•x.0

ui
~1!5ReH (

s51

3

ds
~1!Ais

~1! exp$ ik~m•x1ps
~1!n•x2vt !%J ,

~5a!

s i j
~1!nj52ReH ik(

s51

3

ds
~1!Bis

~1!

3exp$ ik~m•x1ps
~1!n•x2vt !%J ~5b!

and forn•x,0

ui
~2!5ReH (

s51

3

ds
~2!Āis

~2! exp$ ik~m•x1 p̄s
~2!n•x2vt !%J ,

~5c!

s i j
~2!nj52ReH ik(

s51

3

ds
~2!B̄is

~2!

3exp$ ik~m•x1 p̄s
~2!n•x2vt !%J , ~5d!

whereB5RT
•A1T•A•P andP5diag$p1 ,p2 ,p3%.

Substituting solutions~5! with n•x50 into ~1a! and ~1b!
one can write the interface conditions, respectively, as

ReH (
s51

3

ds
~1!Bis

~1!2(
s51

3

ds
~2!B̄is

~2!J 50, ~6a!

ReH (
s51

3

ds
~1!Āis

~1!2(
s51

3

ds
~2!Āis

~2!

22hki(
s51

3

(
r51

3

ds
~1!M̂ ir

I Brs
~1!J 50. ~6b!

These conditions are equivalent to

S I
A~1!~B~1!!212~2hki!M̂ I

2I
2Ā~2!~B̄~2!!21D

636

3HB~1!d~1!

B̄~2!d~2!J
631

5H 00J
631

. ~7!

For nontrivial solutions of~7! to exist

det@ iA~1!~B~1!!211~2hk!M̂ I2 i Ā~2!~B̄~2!!21#50. ~8!

This dispersion relation can be also rewritten in terms of the
interface impedance matrixH5Z~1!1Z̄~2! which is defined

from the surface impedance matricesZ5iA~B!21

5i ~RT1T•A•P•A21!21 for each half-space as32

det@H12khM̂ I #50. ~9!

~The stationary-wave limit30 is recovered forv→0.! Perfect
bonding~Stoneley-type! solutions are recovered from~9! for
h→0 or M̂ I→0 where the very restrictive necessary condi-
tion for nontrivial solutions to exist is det~H!50 and the
corresponding interfacial waves are nondispersive, i.e., their
velocity of propagation is independent of wave numberk.

Recall that the matrixH in ~9! depends on the elastic
moduli of both materials as well as the velocity of propaga-
tion v, and it is Hermitian in the subsonic range of
velocities,33 v,vb , where vb is defined as the minimum
bulk wave velocity~typically of shear type! in either material
in the directionm. The matrixM̂ I is real and always positive
definite~which is guaranteed ifM* is at least strongly ellip-
tic!. When M̂ I is symmetric the productH~M̂ I!21 is also
Hermitian, and, therefore in this case, the eigenvalues
~22kh! are real. IfM̂ I is nonsymmetric, then~9! may admit
solutions with the imaginary part ofk nonzero. The corre-

FIG. 8. Wavelengthl ~normalized by lattice parametera! vs
velocity v for subsonic interfacial waves propagating along the tilt
axis ~GY! ~a! for B structure in gold and~b! for B8 structure in
copper~log5log10!.
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sponding wave is called ‘‘leaky,’’ since from~5a!,~5c! it does
not propagate parallel to the interface and is not strictly har-
monic in time. Finally, if the velocityv is regarded as an
independent variable we also note that the solutions~5! de-
pend on velocity and bulk properties throughp s

(a), A is
(a), and

B is
(a) and additionally on velocity, bulk, and interface prop-

erties throughk andd s
a which are the eigenvalues and eigen-

vectors, respectively, associated with~7!. If, alternatively, the
wave numberk is regarded as an independent variable, then
the velocity satisfying~9! depends onk as do all the other
variables just listed.

These waves will now be investigated for infinite bicrys-
tals with theS55 ~12̄0!/@001# symmetrical tilt grain bound-
ary considered above in gold and copper. For these bicrystals
with the effective interfacial compliances obtained from ato-
mistic calculations12 the off-diagonal elements of~M̂ I!21 are
several orders of magnitude smaller than diagonal elements,
so that antisymmetric part of~M̂ I!21 is indeed small@note for
symmetric tilt about thex2 cube thatM̂

I ~333! derived from
1/2~M ~1!1M ~2!! in place ofM* in ~3! is indeed symmetric#.
Hence the imaginary part ofki , i51,3, is also several orders
of magnitude smaller than the real part and the correspond-
ing solutions are essentially propagating harmonic waves.34

For this bicrystal, among the three mathematical branches of
solution~k1, k2, andk3! only one is physically realistic in the
sense that the real part ofk is positive for all velocities in the
subsonic range.35 Also for this bicrystal type, i.e., with a
symmetrical tilt grain boundary formed by joining two cubic
crystals rotated about a cube axis, one partial interfacial
wave is uncoupled. For theS55 ~12̄0!/@001# grain boundary
under consideration, the latter partial wave is the only one
for which k.0 for all v,~vbulk!min .

Since the mode with Re$p%50 propagates exactly along
the interface and this mode is decoupled, only Re$p%50
modes will be used for comparison with the acoustical
phonons obtained from the discrete calculations~Sec. III!.
The influence of the springlike interfacial conditions is in-
vestigated from dispersion, amplitude attenuation, and the
polarization of the waves. In this problem the wave numberk
or wavelengthl51/k, calculated as the eigenvalues of~9!,
not only depend on the velocityv for a given bicrystal but
also on the interfacial propertiesM̂ I . Note that some of the
characteristics of wave solutions are independent of interfa-
cial conditions. For example, only behavior of Im$p% as a
function of v determines if such waves become bulklike in
the long-wavelength limit, i.e.,l→` or uku→0. The small
wave number limit is achieved whenv approaches either
perfect bonding velocityvp.b. from left or from right or when
v→~vbulk!min . In this limit ~9! reduces to det~H!50 which
depends only on the bulk properties and the velocity of
propagation.

First we consider continuum interfacial waves propagat-
ing along the tilt axis~x2 or GY direction! in theS55 ~12̄0!/
@001# grain boundary. Recall that ‘‘perfect bonding’’
Stoneley-type solutions@h50 in ~9!, i.e., detH50, which
also corresponds tok50# exist in this case at the calculated
velocitiesv/~vbulk!min50.84 in gold and 0.81 in copper.9 ~We
find Stoneley solutions also exist for propagation directions
lying in the interface within a65° range away from the tilt
axis, but only for the wave propagating exactly along the tilt
axis is Re$p%50, otherwise the wave is ‘‘leaky.’’! The wave-

lengthl normalized by the lattice parametera is plotted as a
function of velocity in Figs. 8~a! and 8~b! for gold and cop-
per, respectively, and for different choices of the thicknessh
of the interfacial layer in~9!; note thatM̂ I which depends on
h is determined without any adjustable parameters from the
results of Ref. 12. There are two branches of solutions in the
long-wavelength limit for these waves propagating along the
tilt axis: one is forv→vp.b. and the other forv→~vbulk!min
and in both cases the velocity is nearly independent of wave-
length, i.e., the solution is nearly nondispersive. This nondis-
persive character is exactly found for the Stoneley solutions
which only exist atv5vp.b.. The attenuation of these waves
is plotted in Figs. 9~a! and 9~b!; for these exponentially de-
caying wave solutions, i.e.,u}exp~2ux3u/d!, wherex3 is the
coordinate normal to the interface andd5l/Im$p%. The at-
tenuation becomes weaker, relative to the lattice dimension,
asl increases~or k decreases! which, from Fig. 8, occurs as
v→vp.b. andv→~vbulk!min .

The ~elliptical! polarization of these waves, i.e., the direc-
tion of the displacement of material points, is defined from
the productsA~a!

•d~a! in ~5! and plotted in Figs. 10~a! and

FIG. 9. Decay lengthd ~normalized by lattice parametera! vs
velocity v for subsonic interfacial waves propagating along the tilt
axis ~GY! ~a! for B structure in gold and~b! for B8 structure in
copper~log5log10!.
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10~b! in terms of two anglesc1 andc2 where for the wave
propagation in thex2 direction

c15
2

p
tan21S Uu1u3U D , ~10a!

c25
22

p Ucos21S Uu2uuuU D2
p

2U. ~10b!

For c250 the wave is purely transversal~shear!; for c150
with c250 it is pure shear normal to the interface, and for
c151 with c250 it is in-plane shear. Forc2521 ~any c1!
the wave is purely longitudinal. The polarization depends on
v ~or l! and can vary significantly from the perfect-bonding
and bulk waves which, in the present case, are both domi-
nated by in-plane shear for the direction of propagation par-
allel to the tilt axis. Therefore, the local properties of the
interface region affect both the dispersion and attenuation of
these interface waves.

Next we consider continuum interfacial waves propagat-
ing in the interface and perpendicular to the tilt axis~x1 or
GX direction! in theS55 ~12̄0!/@001# grain boundary. Since
the Stoneley-type solutions do not exist in this case,9 the
plots of wavelength versus velocity~Fig. 11! and decay-
length versus velocity~Fig. 12! are simpler than for the case
of waves propagating along the tilt axis. Again, these waves
are dispersive with both wavelength and decay length in-
creasing as the velocity increases up to~vbulk!min . The polar-
ization for these waves propagating in thex1 direction are
plotted in Fig. 13 in terms of the two angles

c15
2

p
tan21S Uu2u3U D , ~11a!

c25
22

p Ucos21S Uu1uuuU D2
p

2U ~11b!

with the same interpretation of wave type with limiting val-
ues ofc1 andc2 as in the preceding paragraph.

FIG. 10. Polarization plots~c1, c2 vs v! for subsonic interfacial
waves propagating along the tilt axis~GY! ~a! for B structure in
gold and~b! for B8 structure in copper.

FIG. 11. Wavelengthl ~normalized by lattice parametera! vs
velocity v for subsonic interfacial waves propagating perpendicular
to the tilt axis ~GX! ~a! for B structure in gold and~b! for B8
structure in copper~log5log10!.
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V. COMPARISON BETWEEN CONTINUUM WAVES
AND PHONONS

Phonons localized in theS55 ~12̄0!/@001# grain boundary
and propagating perpendicular to and parallel to the tilt axis
were calculated in Sec. III~parallel to the vectorsGX5~1/
5a!@210# andGY5~3/10a!@002#, respectively!. The results
plotted in Figs. 5–7 correspond to wavelengthsl544.7a
and l533.3a for the GX andGY directions, respectively.
The continuum solutions developed in Sec. IV will be com-
pared at these wavelengths. These solutions also depend on
the half-thicknessh chosen to describe the interfacial region;
note thath enters~9! explicitly and throughM̂ I(h), which is
determined from~3! using the atomistic results.12 Consistent
with the trends in elastic moduli variations12 @see Figs. 7~a!
and 8~b! in that paper#, particularly the extent of the grain-
boundary region where the elastic properties differ from
those of the ideal crystal being greater in gold than in copper,
we have chosenh/a54 for gold andh/a52 for copper for
the comparisons discussed below.

Table III gives the predicted continuum velocities~vcont!
from the solution to~9! as well as the calculated phonon
velocities ~vat! at the same wavelengths, and it is seen that

they are in reasonable agreement. Recall that the latter are
for superlattices while the continuum solutions are for joined
half-spaces. Also recall that ‘‘perfect bonding’’ Stoneley-type
solutions@h50 in ~9!, i.e., detH50, which also corresponds
to k50# exist only for waves propagating in theGY direction
at the velocitiesv/~vbulk!min50.84 in gold and 0.81 in copper.
The components of the polarization vector, i.e., the vector
A~a!

•d~a! in ~5a! and ~5c!, are also listed in Table III and
normalized so that the largest component has value of unity
consistent with the phonon plots of Figs. 5–7. These compo-
nents also compare favorably with the peaks of each compo-
nent in those figures which are also listed in Table III. In
particular, the wave propagating in thex2 ~GY! direction in
gold is of the horizontal shear type, i.e., dominated by thex1
component of displacement~as also predicted by the perfect
bonding, Stoneley solution!, while the corresponding wave
in copper is of the vertical shear type, i.e., dominated by the
x3 component of displacement~which is inconsistent with
the perfect bonding, Stoneley solution!. Furthermore, the
continuum solutions also satisfactorily reproduce trends in

FIG. 12. Decay lengthd ~normalized by lattice parametera! vs
velocity v for subsonic interfacial waves propagating perpendicular
to the tilt axis ~GX! ~a! for B structure in gold and~b! for B8
structure in copper.

FIG. 13. Polarization plots~c1,c2 vs v! for subsonic interfacial
waves propagating perpendicular to the tilt axis~GX! ~a! for B
structure in gold and~b! for B8 structure in copper~log5log10!.
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the decay length, where, as seen from Figs. 9~a! and 9~b!, the
decay length in copper tends to be longer than that in gold at
the same wavelength.

The strong influence of the distinct interface structure and
properties at these wavelengths that are considerably larger
~at least an order of magnitude! than the thickness of the
interfacial region has been demonstrated from detailed com-
parisons of the phonons with continuum models of elastic
interface waves. The magnitude of the wavelengths~or
smallness of wave number! considered were limited both
from the separation of the grain boundaries in the superlat-
tice and numerical considerations in the phonon calculations.
Nevertheless, the continuum solutions for joined half-spaces
can be interrogated at longer wavelengths where, from the
results presented in Sec. IV, it is seen that the interface prop-
erties play an important role even at longer wavelengths.
Nevertheless, in the long-wavelength limit, i.e., asl→` or
k→0, the continuum solutions are independent of interface
properties as one would expect~except for extremes in prop-
erties, e.g., no resistance to shear! and yield one or possibly
two velocities for this boundary:v→vp.b. if the perfect bond-
ing solution exists~for propagation in theGY direction! or
v→vbulk ~in both theGX andGY directions! the effect of

interface is lost and only bulk properties determine the form
~polarization, attenuation, dispersion behavior! of the wave
solutions.

In summary, we have seen that phonon spectra of bicrys-
tals with relaxed grain-boundary structure display a variety
of localized modes including long-wavelength acoustic
modes. Continuum solutions for localized waves that incor-
porate atomic-level elastic properties of the interface via dis-
continuity relations agree well with the latter modes. In con-
trast, classical solutions that depend only on bulk elastic
properties do not. This demonstrates that the distinct atomic
structure of the interface is a controlling factor, and it is
shown how local, atomic-level properties can be incorpo-
rated into continuum analyses of interfacial phenomena.
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