144 research outputs found

    Dynamic resource allocation for opportunistic software-defined IoT networks: stochastic optimization framework

    Get PDF
    Several wireless technologies have recently emerged to enable efficient and scalable internet-of-things (IoT) networking. Cognitive radio (CR) technology, enabled by software-defined radios, is considered one of the main IoT-enabling technologies that can provide opportunistic wireless access to a large number of connected IoT devices. An important challenge in this domain is how to dynamically enable IoT transmissions while achieving efficient spectrum usage with a minimum total power consumption under interference and traffic demand uncertainty. Toward this end, we propose a dynamic bandwidth/channel/power allocation algorithm that aims at maximizing the overall network’s throughput while selecting the set of power resulting in the minimum total transmission power. This problem can be formulated as a two-stage binary linear stochastic programming. Because the interference over different channels is a continuous random variable and noting that the interference statistics are highly correlated, a suboptimal sampling solution is proposed. Our proposed algorithm is an adaptive algorithm that is to be periodically conducted over time to consider the changes of the channel and interference conditions. Numerical results indicate that our proposed algorithm significantly increases the number of simultaneous IoT transmissions compared to a typical algorithm, and hence, the achieved throughput is improved

    Accurate Determination of the Neutron Skin Thickness of \u3csup\u3e208\u3c/sup\u3ePb

    Get PDF
    We report a precision measurement of the parity-violating asymmetry Apv in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure Apv = 550 ± 16(stat) ± 8(syst) parts per billion, leading to an extraction of the neutral weak form factor Fw (Q2 = 0.00616 GeV2) = 0.368 ± 0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn - Rp = 0.283 ± 0.071 fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0w = -0.0796 ± 0.0036(exp) ± 0.0013(theo) fm-3) leading to the interior baryon density ρ0b)= 0.1480 ± 0.0036(exp) ± 0.0013(theo) fm-3. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars

    Electroexcitation of the Δ+ (1232) at Low Momentum Transfer

    Get PDF
    We report on new p(e, e\u27 p)π°. measurements at the Δ+(1232) resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2 -\u3e 0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements

    Search for Three-Nucleon Short-Range Correlations in Light Nuclei

    Get PDF
    We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 \u3c x \u3c 2, confirming the dominance of two-nucleon short-range correlations. For x \u3e 2, our data support the hypothesis that a previous claim of three-nucleon correlation dominance was an artifact caused by the limited resolution of the measurement. While 3N-SRCs appear to have an important contribution, our data show that isolating 3N-SRCs is significantly more complicated than for 2N-SRCs

    New Measurements of the Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering Over a Range of Spin-0 Nuclei

    Get PDF
    We report precision determinations of the beam-normal single spin asymmetries (An) in the elastic scattering of 0.95 and 2.18 GeV electrons off 12C, 40Ca, 48Ca, and 208Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of An for 40Ca and 48Ca are found to be similar to that of 12C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z ≤ 20. We also report An for 208Pb at two new momentum transfers (Q2) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the Z ≤ 20 nuclei. These data confirm our basic understanding of the underlying dynamics that govern An for nuclei containing ≲ 50 nucleons, but point to the need for further investigation to understand the unusual An behavior discovered for scattering off 208Pb

    Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He( e, e′ pN) Triple-Coincidence Reaction

    Get PDF
    We studied simultaneously the 4He(e,e′p), 4He (e,e′pp), and 4He( e,e′pn) reactions at Q2 = 2(GeV/c)2 and xB \u3e 1,for an (e,e′p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4He and discussed in the context of probing the elusive repulsive component of the NN force

    Prevalence of Self-Reported and Doctor-Diagnosed Food Allergies among Schoolchildren Aged 6-14 in Al-Karak Governorate: A Questionnaire-Based Survey

    Get PDF
    Food allergies are common in children and could be potentially fatal. This study used a cross-sectional questionnaire-based survey to estimate the prevalence of self-reported and doctor-diagnosed food allergies. Its further aim was to identify the common food allergens and food allergy symptoms among schoolchildren aged 6-14 in Al-Karak Governorate in South Jordan. Among the 1241 children evaluated, the overall prevalence of self-reported food allergy of 11.2% was determined, while the prevalence of doctor-diagnosed food allergy was 3.4%. In terms of relative frequency, egg accounted for more than a third of all reactions. The second most common allergen was fish (26.1%), followed by co

    Rosenbluth Separation of the π0 Electroproduction Cross Section Off the Neutron

    Get PDF
    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2 = 1.75 GeV2 and xB = 0.36. The ed -\u3e edπ0 cross sections are found compatible with the small values expected from theoretical models. The en -\u3e enπ0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section

    A Glimpse of Gluons Through Deeply Virtual Compton Scattering on the Proton

    Get PDF
    The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction

    Measurement of the Nucleon F\u3csup\u3en\u3c/sup\u3e₂/F\u3csup\u3ep\u3c/sup\u3e₂ Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment

    Get PDF
    The ratio of the nucleon F2 structure functions, Fn2/Fp2, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from 3H and 3He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range 0.19 \u3c x \u3c 0.83, represent a significant improvement compared to previous SLAC and Jefferson Lab measurements for the ratio. They are compared to recent theoretical calculations and empirical determinations of the Fn2/Fp2 ratio
    corecore