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We studied simultaneously the 4Heðe; e0pÞ, 4Heðe; e0ppÞ, and 4Heðe; e0pnÞ reactions at Q2 ¼
2ðGeV=cÞ2 and xB > 1, for an ðe; e0pÞ missing-momentum range of 400 to 830 MeV=c. The
knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back
to the missing momentum, leaving the residual A ¼ 2 system at low excitation energy. These data were
used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function
of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from
predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon
momentum increases beyond ∼500 MeV=c. The extracted fraction of proton-proton pairs is small and
almost independent of the missing momentum. Our data are compared with calculations of two-nucleon
momentum distributions in 4He and discussed in the context of probing the elusive repulsive component of
the NN force.

DOI: 10.1103/PhysRevLett.113.022501 PACS numbers: 21.30.Fe, 21.10.−k, 21.60.−n, 25.30.−c

The stability of atomic nuclei is due to a delicate
interplay between the long-range attraction that binds
nucleons and the short-range repulsion that prevents the
collapse of the system. In between, the dominant scalar part
of the nucleon-nucleon force almost vanishes and the
interaction is dominated by the tensor force, which depends
on the spin orientations and the relative orbital angular
momentum of the nucleons.
Recent high-momentum-transfer triple-coincidence

12Cðe; e0pNÞ and 12Cðp; 2pnÞ measurements [1–4] have
shown that nucleons in the nuclear ground state form pairs
with large relative momentum and small center-of-mass
(c.m.) momentum, where large and small are relative to the
Fermi momentum of the nucleus. We refer to these pairs as
short-range correlated (SRC) pairs [5–7]. When the missing
momentum (the knocked-out proton initial momentum in
the absence of final state interactions) is in the range of
300–600 MeV=c, these pairs were found to dominate the
high-momentum tails of the nuclear wave functions,
with neutron-proton (np) pairs nearly 20 times more
prevalent than proton-proton (pp) pairs, and by inference
neutron-neutron (nn) pairs. This is due to the strong
dominance of the NN tensor interaction at the probed
sub-Fermi distances [8–10].
The association of the small 12Cðe; e0ppÞ=12Cðe; e0pnÞ

ratio at ðe; e0pÞmissing momenta of 300–600 MeV=c, with

dominance of the NN tensor force, leads naturally to the
quest for increasing missing momenta. This allows the
search for pairs at distances in which the nuclear
force changes from being predominantly tensor to the
essentially unexplored repulsive interaction. We report here
on a simultaneous measurement of the 4Heðe; e0pÞ,
4Heðe; e0ppÞ and 4Heðe; e0pnÞ reactions at ðe; e0pÞmissing
momenta from 400 to 830 MeV=c. The observed changes
in the isospin composition of the SRC pairs as a function
of the missing momentum are presented, discussed, and
compared to calculations.
The experiment was performed in Hall A of Jefferson

Laboratory (JLab) using a 4 μA electron beam with an
energy of 4.454 GeV incident on a 20-cm-long high pressure
4He gas target (13 atm, 20 K, 0.033 g=cm3) contained in
an 8-cm-diameter, 20-cm-long aluminum cylinder.
The two Hall A high-resolution spectrometers (HRS)

[11] were used to identify 4Heðe; e0pÞ events. Scattered
electrons were detected in the left HRS (L-HRS) at a
central scattering angle of 20.3° and momentum of
3.602 GeV=c. This setup corresponds to the quasi-free
knockout of a single proton with transferred three-
momentum j~qj≈1.64GeV=c, transferred energy ω≈
0.86GeV, the negative four-momentum transfer squared
Q2 ≈ 2ðGeV=cÞ2, and xB ≡ ðQ2=2mpωÞ ≈ 1.2, where mp
is the proton mass. Knocked-out protons were detected
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using the right HRS (R-HRS), which was set at three
different central angles and momenta: (33.5°, 1.38 GeV=c),
(29°, 1.3 GeV=c), and (24.5°, 1.19 GeV=c). These
kinematical settings correspond to ðe; e0pÞ central
missing momenta ~pmiss¼ ~pp−~q) values of 500MeV=c,
625 MeV=c, and 750 MeV=c, respectively, covering a
missing-momentum range of 400–830 MeV=c with over-
lap between the three different settings.
The 4Heðe; e0pÞ events were selected by placing a �3σ

cut around the σ ¼ 0.6 ns coincidence timing peak.
The fraction of random events inside the time window
increased from 1% at the lowest missing momentum
measurement to 9% at the highest. The other cuts on the
ðe; e0pÞ data were the nominal HRS phase-space cuts on
momentum (jΔp=pj ≤ 0.045) and angles (�60 mrad
vertical, �30 mrad horizontal). To reduce the random-
coincidence background, a cut on the target-reconstructed
vertex ensured that both the electron and the proton
emerged from the same place within �3 cm. The
Δð1232Þ excitation was excluded by a cut on the quasi
elastic ðe; e0pÞ peak, as in Ref. [12].
For highly correlated pairs, the missing momentum of

the Aðe; e0pÞ reaction is expected to be balanced almost
entirely by a single recoiling nucleon. A large acceptance
spectrometer (BigBite) followed by a neutron detector
(HAND) with a matching solid angle was used to detect
correlated recoiling protons or neutrons. The experiment
triggered on e − p coincidences between the HRS spec-
trometers, with the BigBite and HAND detectors read out
for every trigger.
The recoiling protons were detected by the BigBite

spectrometer [13] centered at an angle of 97° for the 500
and 625 MeV=cmeasurements and 92° for the 750 MeV=c
measurement. The angle between ~q and the recoil nucleon
was 40°–50°. The angular acceptance was about 96 msr
and the detected momenta accepted ranged from 0.25
to 0.90 GeV=c. The momentum resolution of BigBite,
determined from elastic electron-proton scattering, was
Δp=p ¼ 1.5%. The overall proton detection efficiency
was 73� 1%.
HAND consists of several elements: a 2.4-cm-thick lead

shield (to block low-energy photons and most of the
charged particles coming from the target), followed by
64, 2-cm-thick scintillators (to identify and veto charged
particles), and 112 plastic scintillator bars arranged in six,
10-cm-thick layers covering an area of 1 × 3 m2 (to detect
the neutrons). HAND was placed six meters from the
target, just behind BigBite, covering a similar solid angle as
BigBite.
The pattern of hits in sequential layers of HANDwas used

to identify neutrons [14]. A time resolution of 1.5 ns allowed
determination of the neutron momentum with an accuracy
that varied from 2.5% (at 400 MeV=c) to 5% (at
830 MeV=c). The detection efficiency was 40� 1.4% for
400–830 MeV=c neutrons.This determination is basedon the

efficiency measured up to 450 MeV=c using the dðe; e0pnÞ
reaction, and extrapolated using a simulation that reproduces
well the measured efficiency at lower momenta [15].
The picture of SRC pair breakup with the other two

nucleons in 4He being essentially spectators is supported by
Fig. 1. The figure shows the distribution of the cosine of the
angle between the missing momentum and the recoiling
neutrons (γ). We also show the angular correlation for the
random background (dashed-dotted) as defined by a time
window off the coincidence peak. While the placement of
the neutron detector opposite to the nominal missing
momentum defined by the central rays of the high resolution
spectrometers leads to a geometrical angular correlation in
the random background, the real triple-coincidence events
show a clear back-to-back peak above this background. The
curve is a result of a simulation of the scattering of a moving
pair as discussed below. Similar back-to-back correlations
were observed for the recoiling protons. The inserts to
Fig. 1 show the missing-mass for the 4Heðe; e0ppÞ and
4Heðe; e0pnÞ reactions corresponding to a two-nucleon
residual system with a low-excitation energy.
Software cuts were applied to both BigBite and HAND

that limited their acceptances to �14° in the vertical
direction, �4° in the horizontal direction, and
300–900 MeV=c in momentum. A model, tuned to match
experimental data, was used to correct the yield of the
4Heðe; e0pNÞ events for the finite acceptances of the
recoiling protons and neutrons in BigBite and HAND.
Following Ref. [1], the simulations assumed that an
electron scatters off a moving SRC pair with a c.m.
momentum relative to the A − 2 spectator system described
by a Gaussian distribution as in Ref. [16]. We assumed an

FIG. 1 (color online). The distribution of the cosine of the
opening angle γ between the ~pmiss and ~precoil for the 4Heðe; e0pnÞ
reaction (pmiss ¼ 625 and 750 MeV=c kinematics combined).
The solid curve is a simulation of scattering off a moving pair
with a c.m. momentum having a width of 100 MeV=c. The
inserts show the missing-mass distributions. In both the main
figure and the inserts, the data are shown with no random
background subtraction. The random background is shown as
dash-dotted (red online) curves.
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isotropic three-dimensional motion of the pair and varied
the width of the Gaussian equally in each direction until the
best agreement with the data was obtained. The nine
measured distributions (three components in each of the
three kinematic settings for np pairs) yield, within the
uncertainties, the same width with a weighted average of
100� 20 MeV=c. This is in good agreement with the c.m.
momentum distribution calculated in Ref. [10]. Figure 1
compares the simulated and measured distributions of the
opening angle between the knocked-out and recoiling nucle-
ons. The fraction of events detected within the finite accep-
tancewas used to correct themeasured yield. The uncertainty
in this correction was typically 15%, which dominates the
systematic uncertainties of the 4Heðe; e0pNÞ yield.
The measured 4Heðe; e0pNÞ=4Heðe; e0pÞ ratios are given

by the number of events in the background-subtracted
triple-coincidence TOF peak corrected for the finite accep-
tance and detection efficiency of the recoiling nucleons,
divided by the number of random-subtracted (double-
coincidence) 4Heðe; e0pÞ events. These ratios, as a function
of pmiss in the 4Heðe; e0pÞ reaction, are displayed as full
symbols in the two upper panels of Fig. 2. Because the
electron can scatter from either proton of a pp pair (but only
from the single proton of an np pair), we divided the
4Heðe; e0ppÞ yield by two. Also displayed in Fig. 2, as
empty symbols with dashed bars, are similar ratios for 12C
obtained from previous electron scattering [1,2] and proton
scattering [4] measurements. In comparing the 12C and 4He
data, it is noted that the measured ratios are about equal and
very different from the ratios of naive pair counting in these
nuclei. The horizontal bars show the overlapping momen-
tum acceptance ranges of the various kinematic settings.
The vertical bars are the uncertainties, which are predomi-
nantly statistical.
Because we obtained the 4Heðe; e0ppÞ and 4Heðe; e0pnÞ

data simultaneously and with the same solid angles and
momentum acceptances, we could also directly determine
the ratio of 4Heðe; e0ppÞ to 4Heðe; e0pnÞ. In this ratio, many
of the systematic factors needed to compare the triple-
coincidence yields cancel out, and we need to correct only
for the detector efficiencies. This ratio as a function of the
missing momentum is displayed in the bottom panel of Fig. 2
together with the previously measured ratio for 12C [2].
To extract from the measured cross-section ratios the

underlying pair ratios, corrections for final-state inter-
actions (FSI) were calculated using the Glauber approxi-
mation [17]. The Glauber corrections (TL ¼ 0.75 and
TR ¼ 0.66–0.73), with TL and TR the leading and recoil
transparencies, were calculated by the Ghent group [17].
We assumed the uncertainties to be �20% of these values.
The single charge exchange (SCX) probability (PSCX) was
assumed to be 1.5� 1.5% based on the SCX total cross
section of 1.1� 0.2 mb [18]. The pair fraction extracted
from the measured ratios with the FSI calculated correc-
tions are shown in Fig. 2 as bands (see the Appendix for

details). The statistical and systematic uncertainties were
treated as independent and combined by simulation to
create the width of the one standard deviation bands shown
in Fig. 2. The systematic uncertainties in the correction
factor (15% due to finite detector acceptance, ∼20% due to
FSI) and statistical fluctuations can explain the extension of
the band beyond 100%.
The correction to the ratios due to attenuation of the

leading-proton is small. The attenuation of the recoiling
nucleon decreases the measured triple- or double-
coincidence ratios. Because the measured 4Heðe; e0pnÞ
rate is about an order of magnitude larger than the
4Heðe;e0ppÞ rate, 4Heðe; e0pnÞ reactions followed by a
single charge exchange [and hence detected as
4Heðe;e0ppÞ] increase the 4Heðe; e0ppÞ=4Heðe; e0pnÞ and
the 4Heðe; e0ppÞ=4Heðe; e0pÞ measured ratios.
The two-nucleon momentum distributions were calcu-

lated for the ground states of 4He using variational Monte
Carlo wave functions derived from a realistic Hamiltonian

FIG. 2 (color online). Bottom panel: the measured ratios
4Heðe; e0ppÞ=4Heðe; e0pnÞ shown as solid symbols, as a function
of the 4Heðe; e0pÞ missing momentum. Each point is the result of
a different setting of the detectors. The bands represent the data
corrected for FSI to obtain the pair ratios, see text for details. Also
shown are calculations using the momentum distribution of
Ref. [10] for pairs with weighted-average c.m. momentum
assuming arbitrary angles between the c.m. and the relative
momenta in the pair (solid black line). The middle panel shows
the measured 4Heðe; e0ppÞ=4Heðe; e0pÞ and extracted #pp=#p
ratios. The top panel shows the measured 4Heðe; e0pnÞ=
4Heðe; e0pÞ and extracted #pn=#p ratios. The unphysical region
above 100% obtained due to systematic uncertainties and
statistical fluctuations is marked by white strips. Ratios for
12C are shown as empty symbols with dashed bars. The
empty star in the top panel is the BNL result [4] for
12Cðp; 2pnÞ=12Cðp; 2pÞ.
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with Argonne V18 and Urbana X potentials [10]. The
calculations for fixed pair c.m. momentum (Kc.m.) averaged
over all directions of the relative momentum ( ~Krel) and
~Kc.m. [10] were weighted by the measured distribution of
Kc.m. to yield the solid (black) curve shown in Fig. 2. The
calculation with Kc.m. ¼ 0, which agrees quantitatively
with the Perugia group calculation [19], differs little from
the average shown in the figure. To compare the calcu-
lations to the data in Fig. 2 we assumed that the virtual
photon hits the leading proton and that ~pmiss ¼ ~Krel (plane
wave impulse approximation).
The measurements reported here were motivated by the

attempt to study the isospin decomposition of SRC as a
proxy to a transition from primarily tensor to the short
range repulsive, presumably scalar, nucleon-nucleon force.
In the ground state of 4He [10], the number of pp-SRC
pairs is much smaller than np-SRC pairs for values of the
relative nucleon momentum Krel ≈ 400 MeV=c. This is
because the correlations induced by the tensor force are
strongly suppressed for pp pairs which are predominantly
in 1S0 state [8–10,19]. As the relative momenta increase,
the tensor force becomes less dominant, the role played by
the short-range repulsive force increases and with it the
ratio of pp=np pairs. In our measurement, as the missing
momenta is increased beyond 500 MeV=c, the triple-
coincidence 4Heðe; e0ppÞ=4Heðe; e0pnÞ ratio increases, in
good agreement with the prediction based on the ratio of
pp-SRC=np-SRC pairs in the 4He ground state [10].
The measured triple/double coincidence ratios shed

further light on the dynamics. The measured 4Heðe; e0ppÞ=
4Heðe; e0pÞ ratio reflects a small contribution from
pp-SRC pairs. These pairs are likely dominated by a
scalar repulsive short-range force which is relatively con-
stant over the reported momentum range.
The 4Heðe; e0pnÞ=4Heðe; e0pÞ ratio clearly shows that

the reduction in the np=pp ratio with increasing pmiss is due
to a drop in np-SRC pairs with increasing Krel. While np
pairs still dominate SRC, even at missing momentum of
800 MeV=c, the total fraction of the ðe; e0pÞ cross section
associated with scattering from SRC pairs drops with
increasing missing momentum. This is likely due to an
increase of more complex mechanisms, such as stronger
FSI and the onset of SRC involving more than two
nucleons [5]. A definitive understanding of the relative
importance of these effects requires exclusive measure-
ments at large missing momentum on heavier nuclei, and a
more detailed theoretical study.
To summarize, the short range part of the NN force is

empirically known to be repulsive, it is essential to describe
NN scattering and stability of nuclei, but it is difficult to
explore and poorly known both theoretically and exper-
imentally. The measurements reported here probe a tran-
sition from an attractive to a repulsive NN force. The data
set, interpreted as changes in the isospin decomposition of
the SRC pairs, is consistent with a reduced contribution

from a tensor component and a constant contribution from
a scalar component of the NN force over the probed
missing momentum range. It confirms the phenomenologi-
cal description of the NN force in this range.
One should question to what level the naive interpreta-

tion of the data in terms of the ground state nuclear
properties is appropriate. Comprehensive calculations,
which take into account the full reaction mechanism in a
relativistic treatment, as well as additional data with better
statistics will allow a more detailed determination of the
role played by the elusive repulsive short-range nucleon-
nucleon interaction.
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Appendix.—To extract the SRC pair ratios (#pp=#np,
#pp=#p, and #np=#p) from the measured cross-section
ratios [R ¼ ð4Heðe; e0ppÞ=4Heðe; e0pnÞÞ, R1 ¼
ð4Heðe; e0pnÞ=4Heðe; e0pÞÞ, R2 ¼ ð4Heðe; e0ppÞ=
4Heðe; e0pÞÞ], we assumed factorization and used
Eqs. (A.1–A.3),

#pp
#np

¼
TLR − PSCX

σen
σep

2TL − 2PSCX
σen
σep

R
ðA1Þ

#pp
#p

¼
R1

σen
σep

PSCX
TL

TR − R2TR

2ðσenσep

PSCX
TL

TRÞ2 − 2T2
R

ðA2Þ

#np
#p

¼
R2 − 2 #pp

#p TR

σen
σep

PSCX
TL

TR

; ðA3Þ

where σep (σen) is the cross section for electron scattering
off the proton (neutron) [20].
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