2,382 research outputs found

    Continuous variable quantum teleportation with sculptured and noisy non-Gaussian resources

    Full text link
    We investigate continuous variable (CV) quantum teleportation using relevant classes of non-Gaussian states of the radiation field as entangled resources. First, we introduce the class two-mode squeezed symmetric superposition of Fock states, including finite truncations of twin-beam Gaussian states as special realizations. These states depend on a set of free independent parameters that can be adjusted for the optimization of teleportation protocols, with an enhancement of the success probability of teleportation both for coherent and Fock input states. We show that the optimization procedure reduces the entangled resources to truncated twin beam states, which thus represents an optimal class of non-Gaussian resources for quantum teleportation. We then introduce a further class of two-mode non-Gaussian entangled resources, in the form of squeezed cat-like states. We analyze the performance and the properties of such states when optimized for (CV) teleportation, and compare them to the optimized squeezed Bell-like states introduced in a previous work \cite{CVTelepNoi}. We discuss how optimal resources for teleportation are characterized by a suitable balance of entanglement content and squeezed vacuum affinity. We finally investigate the effects of thermal noise on the efficiency of quantum teleportation. To this aim, a convenient framework is to describe noisy entangled resources as linear superpositions of non-Gaussian state and thermal states. Although the presence of the thermal component strongly reduces the teleportation fidelity, noisy non-Gaussian states remain preferred resources when compared to noisy twin-beam Gaussian states.Comment: 11 pages, 8 figures. Largely revised and expanded version. New material and sections added. To appear in EPJ-ST (Proceedings of the Central European Workshop on Quantum Optics 2007. 14th Edition, 1-5 June 2007, Palermo, Italy

    Continuous variable quantum teleportation with non-Gaussian resources

    Full text link
    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum and the, suitably measured, amount of non-Gaussianity.Comment: 12 pages, 12 figure

    Dynamic Critical approach to Self-Organized Criticality

    Full text link
    A dynamic scaling Ansatz for the approach to the Self-Organized Critical (SOC) regime is proposed and tested by means of extensive simulations applied to the Bak-Sneppen model (BS), which exhibits robust SOC behavior. Considering the short-time scaling behavior of the density of sites (ρ(t)\rho(t)) below the critical value, it is shown that i) starting the dynamics with configurations such that ρ(t=0)0\rho(t=0) \to 0 one observes an {\it initial increase} of the density with exponent θ=0.12(2)\theta = 0.12(2); ii) using initial configurations with ρ(t=0)1\rho(t=0) \to 1, the density decays with exponent δ=0.47(2)\delta = 0.47(2). It is also shown that he temporal autocorrelation decays with exponent Ca=0.35(2)C_a = 0.35(2). Using these, dynamically determined, critical exponents and suitable scaling relationships, all known exponents of the BS model can be obtained, e.g. the dynamical exponent z=2.10(5)z = 2.10(5), the mass dimension exponent D=2.42(5)D = 2.42(5), and the exponent of all returns of the activity τALL=0.39(2)\tau_{ALL} = 0.39(2), in excellent agreement with values already accepted and obtained within the SOC regime.Comment: Rapid Communication Physical Review E in press (4 pages, 5 figures

    Study of the one-dimensional off-lattice hot-monomer reaction model

    Full text link
    Hot monomers are particles having a transient mobility (a ballistic flight) prior to being definitely absorbed on a surface. After arriving at a surface, the excess energy coming from the kinetic energy in the gas phase is dissipated through degrees of freedom parallel to the surface plane. In this paper we study the hot monomer-monomer adsorption-reaction process on a continuum (off-lattice) one-dimensional space by means of Monte Carlo simulations. The system exhibits second-order irreversible phase transition between a reactive and saturated (absorbing) phases which belong to the directed percolation (DP) universality class. This result is interpreted by means of a coarse-grained Langevin description which allows as to extend the DP conjecture to transitions occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.

    Optimization of the transmission of observable expectation values and observable statistics in Continuous Variable Teleportation

    Full text link
    We analyze the statistics of observables in continuous variable quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output state observables in particular cumulants which are additive in terms of the input state and the resource of teleportation. Working with Squeezed Bell-like states, which may be optimized in a free parameter for better teleportation performance we discuss the relation between resources optimal for fidelity and for different observable averages. We obtain the values of the free parameter which optimize the central momenta and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters for the second and fourth order cumulants which do not depend on the squeezing of the resource. The second order central momenta which is equal to the second order cumulants and the photon number average are optimized by the same resource. We show that the optimal fidelity resource, found in reference (Phys. Rev. A {\bf 76}, 022301 (2007)) to depend also on the characteristics of input, tends for high squeezing to the resource which optimizes the second order momenta. A similar behavior is obtained for the resource which optimizes the photon statistics which is treated here using the sum of the squared differences in photon probabilities of input and output states as the distortion measure. This is interpreted to mean that the distortions associated to second order momenta dominates the behavior of the output state for large squeezing of the resource. Optimal fidelity and optimal photon statistics resources are compared and is shown that for mixtures of Fock states they are equivalent.Comment: 25 pages, 11 figure

    Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment

    Get PDF
    In this review, some results of the experimental activity carried out by the authors on advanced composite materials for space applications are reported. Composites are widely employed in the aerospace industry thanks to their lightweight and advanced thermo-mechanical and electrical properties. A critical issue to tackle using engineered materials for space activities is providing two or more specific functionalities by means of single items/components. In this scenario, carbon-based composites are believed to be ideal candidates for the forthcoming development of aerospace research and space missions, since a widespread variety of multi-functional structures are allowed by employing these materials. The research results described here suggest that hybrid ceramic/polymeric structures could be employed as spacecraft-specific subsystems in order to ensure extreme temperature withstanding and electromagnetic shielding behavior simultaneously. The morphological and thermo-mechanical analysis of carbon/carbon (C/C) three-dimensional (3D) shell prototypes is reported; then, the microwave characterization of multilayered carbon-filled micro-/nano-composite panels is described. Finally, the possibility of combining the C/C bulk with a carbon-reinforced skin in a synergic arrangement is discussed, with the aid of numerical and experimental analyses

    Dynamic properties in a family of competitive growing models

    Full text link
    The properties of a wide variety of growing models, generically called X/RDX/RD, are studied by means of numerical simulations and analytic developments. The study comprises the following XX models: Ballistic Deposition, Random Deposition with Surface Relaxation, Das Sarma-Tamboronea, Kim-Kosterlitz, Lai-Das Sarma, Wolf-Villain, Large Curvature, and three additional models that are variants of the Ballistic Deposition model. It is shown that after a growing regime, the interface width becomes saturated at a crossover time (tx2t_{x2}) that, by fixing the sample size, scales with pp according to tx2(p)py,(p>0)t_{x2}(p)\propto p^{-y}, \qquad (p > 0), where yy is an exponent. Also, the interface width at saturation (WsatW_{sat}) scales as Wsat(p)pδ,(p>0)W_{sat}(p)\propto p^{-\delta}, \qquad (p > 0), where δ\delta is another exponent. It is proved that, in any dimension, the exponents δ\delta and yy obey the following relationship: δ=yβRD\delta = y \beta_{RD}, where βRD=1/2\beta_{RD} = 1/2 is the growing exponent for RDRD. Furthermore, both exponents exhibit universality in the p0p \to 0 limit. By mapping the behaviour of the average height difference of two neighbouring sites in discrete models of type X/RDX/RD and two kinds of random walks, we have determined the exact value of the exponent δ\delta. Finally, by linking four well-established universality classes (namely Edwards-Wilkinson, Kardar-Parisi-Zhang, Linear-MBE and Non-linear-MBE) with the properties of both random walks, eight different stochastic equations for all the competitive models studied are derived.Comment: 23 pages, 6 figures, Submitted to Phys. Rev.

    Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends

    Full text link
    Within self-consistent field theory we study the phase behaviour of a symmetric binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to the interface localisation/delocalisation transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. The crossover between these qualitatively different limiting behaviours occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field.Comment: to appear in Europhys.Let

    Age Based Modelling of SARS-CoV-2 Contagion: The Italian case

    Get PDF
    The paper deals with the modelling of the COVID-19 spread among people with different age. The model introduced is a simplified version of a full age based one where the division into age based groups of the population is performed only for distinguishing the initial contagion step. An identification procedure is performed on the basis of the data acquired for the Italian case showing that the model can describe and explain the actual differences between the different aged individuals with respect to the possibility to acquire the virus

    Inference on a stochastic two-compartment model in tumor growth

    Get PDF
    A continuous-time model that incorporates several key elements in tumor dynamics is analyzed. More precisely, the form of proliferating and quiescent cell lines comes out from their relations with the whole tumor mass, giving rise to a two-dimensional diffusion process, generally time non-homogeneous. This model is able to include the effects of the mutual interactions between the two subpopulations. Estimation of the rates of the two subpopulations based on some characteristics of the involved diffusion processes is discussed when longitudinal data are available. To this aim, two procedures are presented. Some simulation results are developed in order to show the validity of these procedures as well as to compare them. An application to real data is finally presented
    corecore