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a b s t r a c t

A continuous-time model that incorporates several key elements in tumor dynamics is
analyzed. More precisely, the form of proliferating and quiescent cell lines comes out from
their relations with the whole tumor mass, giving rise to a two-dimensional diffusion
process, generally time non-homogeneous. This model is able to include the effects of
the mutual interactions between the two subpopulations. Estimation of the rates of the
two subpopulations based on some characteristics of the involved diffusion processes is
discussed when longitudinal data are available. To this aim, two procedures are presented.
Some simulation results are developed in order to show the validity of these procedures as
well as to compare them. An application to real data is finally presented.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Tumor growth has received in the past three decades an increasing interest in medical and more generally in scientific
fields. From a mathematical point of view, arrangements of growth models able to describe more and more fine aspects
of tumor growth have occurred. Between the proposed models, very popular are these ones based on ordinary differential
equations (de Pillis et al., 2009; Parfitt and Fyhrie, 1997; Sachs et al., 2001). Moreover, the model that seems better to
fit experimental data is the Gompertz model, since it is able to include an incoming lack of nutrients for cancer cells
(Castorina and Zappalà, 2006; de Vladar et al., 2003; de Vladar and Gonzalez, 2004). Further, the response of tumor to an
antiangiogenetic treatment is still a challenging issue, so the introduction of more and more realistic terms representing
the effect of a therapy in tumor growth is a fundamental problem in such fields. Really, it is reasonable to suppose that a
therapy is able to modify the growth rates of the tumor population. On the other hand, it is known that tumor presents
different behaviors, so it appears natural to suppose that an antiangiogenetic treatment acts in different ways on the
subpopulations. More precisely, in the prevascular phase in the absence of tumor host interactions, the tumor mass shows
three layers: necrotic core (laying in the center of tumor), quiescent (non-proliferating) cells and proliferating cells (Cameron
et al., 1997, 2001; Feizabadi et al., 2008; Freyer and Sutherland, 1986; Kozusko and Bajzer, 2003; Kozusko and Bourdeau,
2007). Quiescent population is characterized by a null-growth rate, but interactions with proliferative cells are possible,
i.e. transition rates between the two populations are possible.

In Albano and Giorno (2006), the authors introduced a stochastic model based on the Gompertz deterministic growth
to describe the dynamics of a tumor population obtaining a diffusion process characterized by lognormal transition
density. In the second instance, the drift of the process was modified introducing an exogenous term representing the
effect of an antiangiogenetic therapy. More precisely, they assumed that the therapy is able to modify the growth rate of
the tumor.
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Afterward, in Albano and Giorno (2008) dynamics of the proliferative and quiescent subpopulations was studied by
means of two diffusions. This approach permitted to include in the model the effect of two classical therapy protocols:
specific-cycle acting only on the proliferative cells and non-specific-cycle drugs able to destroy both the proliferative and
the quiescent populations.

In this paper, we focus on the inference of the parameters of the model. A first step in this sense was made in Albano
et al. (2011) where a methodology to fit the effect of a therapy on the whole population was proposed. More precisely, we
propose two methodologies to estimate the rates of the proliferative and quiescent populations.

In Section 2 the deterministic models for the involved tumor populations are briefly introduced. In particular we derive
some useful relations between the two subpopulations, proliferative and quiescent. Moreover an explicit expression is
derived for the net-transition rate function. In Section 3 a stochastic generalization of themodel is presented, discussing the
main characteristics of the diffusion processes representing the tumor populations. In Section 4 estimation of the rates of the
two subpopulations is discussed when longitudinal data are available. To this end, two estimation methods are considered:
the first one consisting in maximum likelihood method and the second one based on linear regression. Finally, in Section 5,
some simulation results and an application to real data are presented in order to show and compare the validity of the
procedures presented.

2. The deterministic model

Let us denote by t0 the initial time, i.e. the time of diagnosis of the disease, and let y(t) be the tumor size at time
t (t ≥ t0 ≥ 0). Generally, y(t0) = 1; anyway, we can consider the tumor size normalized with respect the initial one,
i.e. x(t) = y(t)/y(t0). Let us assume that dynamics of the population x(t) is described by the following deterministic
Gompertz-type equation:

ẋ(t) = [α − β log x(t)]x(t), x(t0) = 1 (t ≥ t0), (1)

where α and β are positive constants representing the birth rate and the death rate of the tumor population, respectively;
their measurement units are [time]−1. The solution of (1) is

x(t) = exp


α

β


1 − e−β(t−t0)


(2)

characterizing a Gompertz curve. For simplicity, in the following we will assume t0 = 0.
We point out that Eq. (1) describes an undiversified tumor-mass, i.e. it is assumed that tumor cells are all characterized by

the same proliferation rate. A natural generalization of themodel (2) consists to incorporate themain biological phenomena
of a cellular population. In every cellular populationwe recognize three separate compartments in base of their proliferating
capability: (i) the compartment A constituted by proliferating cells, in phase G1 (GAP 1); (ii) the compartment B constituted
by quiescent cells, in phase G0 (out cellular cycle); (iii) the compartment C which contains cells in necrosis or diversified.
By extending a previous model by Gyllenberg and Webb (see Gyllenberg and Webb (1989)), Kozusko and Bajzer (2003)
proposed a dynamic model for the populations of proliferating and quiescent cells in which the transition rates of the two
populations are functions of the total tumor population. Furthermore, the form of the two subpopulations emerges from the
assumption that the total population is governed by the Gompertz equation. Many authors have showed the usefulness of
the Gompertz law determined by (1) in this sense. For example, Helmlinger et al. (1997) remark that this law is able tomodel
the evolution in vitro of multicellular tumor spheroids and apply it to demonstrate that solids stress inhibits their growth.
Recently, D’Onofrio et al. (2011) have presented a new extension of Gompertz law for tumor growth compatible with the
two-compartment model. For this model, denoting by p(t) and q(t) the sizes of proliferating and quiescent populations on
the time t , we have:

x(t) = p(t) + q(t). (3)

Following Kozusko and Bajzer (2003) and Kozusko and Bourdeau (2007) we assume that the proliferating and quiescent
populations dynamics are described from the scheme of Fig. 1. More precisely, the parametersµp ≥ 0 andµq ≥ 0 represent
the death rates for the proliferating and quiescent cells, respectively and η > 0 denotes the birth rate of the proliferating
population. Further, the functions r0(x) ≥ 0 and r1(x) ≥ 0 are the transition rates between the two populations and they
are assumed to be functions of the total number of cells. In particular, r0(x) characterizes the transitions from proliferative
subpopulation into quiescent one and r1(x) specifies the rate from the quiescent compartment into the proliferative one.
The scheme of Fig. 1 leads to the following relations:

ṗ(t) = [η − µp − r0(x)]p(t) + r1(x)q(t) (4)

and

q̇(t) = r0(x)p(t) − [r1(x) + µq]q(t). (5)

From (3), by using (4) and (5), one obtains:

ẋ(t) = ṗ(t) + q̇(t) =

η − µp


p(t) − µq q(t)
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Fig. 1. Two-compartment model of cell population growth.

and from (3) it follows:

ẋ(t) =

η − µp + µq


p(t) − µq x(t). (6)

From (6), making use of definition (1), one has:

p(t) =
x(t)

η−µp + µq
[α − β log x(t) + µq]

that, recalling (2), can be written as

p(t) = ρ(t)x(t) (7)

where

ρ(t) =
µq + αe−βt

η − µp + µq
(8)

denotes the fraction of the tumor mass that defines the proliferating subpopulation.
Note that (8) has to be a positive function. This leads to the following assumptions on the rates of the model:

η > µp − µq.

Further, from (3) or, equivalently, from (5), one has:

q(t) =

1 − ρ(t)


x(t) (9)

that describes the size of the quiescent subpopulation in terms of the total tumor population size.
Let us observe that the transition rates r0(x) and r1(x) can be easily obtained as functions of the parameters η, µp and µq

as shown in Kozusko and Bajzer (2003).
We point out that here the total cancer population is viewed as a little net (cf. Fig. 1) with two nodes representing

the proliferating and quiescent subpopulations. It is interesting to analyze the net transition rate function defined as
follows:

Φ(x, t) = r0(x)p(t) − r1(x)q(t). (10)

Note that if Φ(x, t) is positive then the net transition rate is from the proliferating compartment into the quiescent
compartment; while, negative values ofΦ(x, t)mean a flow fromquiescent subpopulation into proliferating subpopulation.

To evaluate the net transition rate we note that from definition (4), making use of (10), it follows:

ṗ(t) = [η − µp]p(t) − Φ(x, t),

so, from (10), recalling (7), after some simple calculations one can obtain:

Φ(x, t) =

η − µp


p(t) − ṗ(t)

=
x(t)

η − µp + µq


µq + α e−β t η − µp − α e−β t

+ αβ e−β t. (11)

Eq. (11) indicates that the net transition rate is linear with respect to the whole population size.
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3. Generalizing the deterministic model

In order to overcome frequent discrepancies observed between clinical data and theoretical predictions, due to more or
less intense environmental fluctuations, we introduce the stochastic process {X(t), t ≥ t0 ≥ 0}:

dX(t) = [αX(t) − β X(t) ln X(t)] dt + σX(t) dW (t), (12)

where σ is a positive constant representing the width of random fluctuations and W (t) is a standard Brownian motion.
The model (12) is obtained from (1) by introducing the stochastic term σX(t) dW (t). The process {X(t), t ≥ t0 ≥ 0} is a
diffusion defined in I = (0, +∞), characterized by drift and infinitesimal variance:

A1(x) = α x − β x log x, A2(x) = σ 2 x2,

respectively. We point out that the effect of a antiangiogenetic therapy was modeled in Albano and Giorno (2006) via the
introduction of a time-dependent functionC(t) in the drift term, giving rise to the following timenon-homogeneous process:

dXC (t) =

[α − C(t)]XC (t) − β XC (t) ln XC (t)


dt + σXC (t) dW (t). (13)

Let fX (x, t|y, τ ) be the transition probability density function (pdf) of X(t):

fX (x, t|y, τ ) =
∂

∂x
Pr[X(t) < x|X(τ ) = y] (x, y ∈ I, t > τ > t0).

It is solution of the Kolmogorov equation

∂ fX (x, t|y, τ )

∂τ
+ [α y − β y ln y]

∂ fX (x, t|y, τ )

∂y
+

σ 2

2
y2

∂2fX (x, t|y, τ )

∂y2
= 0, (14)

satisfying the initial delta condition:

lim
τ→t

fX (x, t|y, τ ) = δ(x − y).

In order to find the solution of the Eq. (14) we consider the transformation:

x̃ = eβt

log x +

1/β
σ 2/2 − α


, ỹ = eβτ


log y +

1/β
σ 2/2 − α


,

t̃ =
e2βt

2β
, τ̃ =

e2βτ

2β
.

(15)

It reduces the diffusion equation (14) to the analogous one of the Wiener process X̃(t) with drift and infinitesimal variance

B1 = 0, B2 = σ 2,

respectively. Denoting by f̃ the transition pdf of X̃(t), we have

f̃ (x̃, t̃|ỹ, τ̃ ) = x e−βt fX (x, t|y, τ ). (16)

Since f̃ is Gaussian with mean ỹ and variance σ 2 (t̃ − τ̃ ), making use of (15) and of (16), one has:

fX (x, t|y, τ ) =
1

x

2πσ 2(t|τ)

exp

−

[log x − M(t| log y, τ )]2

2σ 2(t|τ)


, (17)

that is, [X(t)|X(τ ) = y] has a lognormal distribution Λ[M(t| log y, τ ); σ 2(t|τ)], with

M(t|y, τ ) = e−β(t−τ)y +


α −

σ 2

2


1 − e−β (t−τ)

β

and

σ 2(t|τ) =
σ 2

2β


1 − e−2β (t−τ)


.

Furthermore, the n-th moment (n = 1, 2, . . .) of the process X(t) is:

E[Xn(t)|y, τ ] = exp

n

M(t| log y, τ ) +

n
2

σ 2(t|τ)


. (18)

From (18) it is immediate to obtain the conditional mean and the conditional variance of the process X(t):

E[X(t)|y, τ ] = exp


M(t| log y, τ ) +
1
2

σ 2(t|τ)
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and

Var[X(t)|y, τ ] = exp

2M(t| log y, τ ) + σ 2(t|τ)


exp{σ 2(t|τ)} − 1


. (19)

By the stochastic Gompertz-type equation (12) it is natural to generalize the models (7) and (9) of the previous section so
to obtain the following stochastic relations:

P(t) = ρ(t)X(t) (20)

and

Q (t) =

1 − ρ(t)


X(t). (21)

We point out that in (20) and (21) the function ρ(t) is deterministic and specified in (8). So we are assuming that a
noise affects the whole tumor population X(t) and we are studying the consequences of this noise on the proliferating and
quiescent cells. This assumption seems reasonable since themost common diagnostic instruments are usually able to detect
the whole tumor volume X(t).

From (20) and (21), by Ito’s formula it is easy to obtain the stochastic differential equations governing the processes P(t)
and Q (t):

dP(t) =


ρ ′(t)
ρ(t)

+ α − β log
P(t)
ρ(t)


P(t) dt + σP(t)dW (t) (22)

and

dQ (t) =


−

ρ ′(t)
1 − ρ(t)

+ α − β log
Q (t)

1 − ρ(t)


Q (t) dt + σQ (t)dW (t), (23)

resulting that P(t) and Q (t) are diffusion processes defined in the interval (0, ∞).
Moreover from (22) and (23) the infinitesimal moments of P(t) and Q (t) can be written, respectively, as follows:

AP
1(x, t) = [α − G(t)] x − βx log x, AP

2(x) = σ 2x2 (24)

and

AQ
1 (x, t) = [α − H(t)] x − βx log x, AQ

2 (x) = σ 2x2, (25)

where

G(t) = −
ρ ′(t)
ρ(t)

− β log ρ(t) and H(t) =
ρ ′(t)

1 − ρ(t)
− β log[1 − ρ(t)]. (26)

An interesting remark is the following: (24) and (25) suggest that the processes P(t) and Q (t) have the same form of the
process XC (t) in (13) with C(t) = G(t) in the case of P(t) and C(t) = H(t) for Q (t).

Finally, from (17), (20) and (21) by making the corresponding change of variables, we obtain the transition pdfs of the
processes P(t) and Q (t):

f P(x, t|y, τ ) =
1

x

2πσ 2(t|τ)

exp

−


log x − log ρ(t) − M


t| log y

ρ(τ)
, τ
2

2σ 2(t|τ)

 (27)

and

f Q (x, t|y, τ ) =
1

x

2πσ 2(t|τ)

exp

−


log x − logω(t) − M


t| log y

ω(τ)
, τ
2

2σ 2(t|τ)

 ,

where ω(t) = 1 − ρ(t).
We point out that by expressing the relations between the quiescent and proliferating subpopulations and the whole

population, we can study in a separate way the process P(t) and Q (t) even if they are strictly connected. Indeed, the
conditional covariance of the two subpopulations is

Cov[P(t),Q (t)|y, τ ] = Cov[ρ(t)X(t), [1 − ρ(t)]X(t)|y, τ ]

= ρ(t)[1 − ρ(t)]Var [X(t)|y, τ ]

where Var [X(t) | y, τ ] is given in (19).
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4. Inference

In this section we will estimate the parameters of the processes P(t) and Q (t). We point out that the parameters
characterizing the whole population, α, β and σ can be estimate by maximum likelihood (ML) method (see Albano et al.,
2011) so only the estimations of µp, µq and η are needed. In the following we provide two alternative methods for the
estimation of µq and η − µp, i.e. the growth net rate of the population P(t): ML method for the processes P(t) and Q (t) and
the second one based on the estimation of G(t) and H(t) defined in (26) and on a linear relation derived by (8).

4.1. Maximum likelihood estimation of the parameters of P(t)

In the following we will focus on the process P(t). An analogous procedure can be developed for Q (t). Let us consider a
discrete sampling of P(t), based on d sample paths, for times tij, (i = 1, . . . , d, j = 1, . . . , ni) with ti1 = t1, i = 1, . . . , d and
denote these values as


xPij

i=1,...,d;j=1,...,ni

. For simplicity we will consider tij − ti,j−1 = h.

From (27), denoting n =
d

i=1 ni and xP the vector containing the xPij values, and considering a lognormal initial
distribution P(t1) ∼ Λ1(µ1, σ

2
1 ), the log-likelihood function is

log LxP (µ1, σ
2
1 , η, µp, µq) = −

n
2
log(2π) −

d
2
log σ 2

1 −
n − d
2

log σ 2(h|0) −

d
i=1

log xPi1 −

d
i=1

ni
j=1

log xPij

−
1

2σ 2
1

d
i=1


log(xPi1 − µ1)

2
−

1
2σ 2(h|0)

d
i=1

ni
j=1


(log xPij − M(h| log xPi,j−1, 0))

− log B(2)
ij + e−β h log B(1)

ij + (1 − e−βh) log(η − µp + µq)
2

,

where

B(1)
ij = µq + αe−β ti,j−1 , B(2)

ij = µq + αe−β(ti,j−1+h).

The parameters to estimate areµ1,σ1, related to the initial distribution, andµp,µq andη connected to the two-compartment
model. We consider α, β and σ 2 as fixed values; this means that the inference on P(t) is provided after the estimation of
X(t). The ML estimations of µ1 and σ 2

1 are

µ1 =
1
d

d
i=1

log xPi1, σ 2
1 =

1
d

d
i=1

(log xPi1 −µ1)
2.

Moreover, the likelihood equations for η andµp are equal, so it is possible to estimateµq and η−µp. Concretely the following
system of equations can be obtained:

d
i=1

ni
j=2


log xPij − log B(2)

ij − M(h| log xPi,j−1, 0) + e−β h log B(1)
ij + (1 − e−β h) log(η − µp + µq)


= 0 (28)

and

d
i=1

ni
j=2


log xPij − log B(2)

ij − M(h| log xPi,j−1, 0) + e−β h log B(1)
ij + (1 − e−β h) log(η − µp + µq)


Cij = 0 (29)

with Cij =
1

B(2)
ij

−
e−β h

B(1)
ij

. We denote by

XP
1 =

d
i=1

ni
j=2

log xPij, XP
2 =

d
i=1

ni
j=2

log xPi,j−1,

XP
1,∗ =

d
i=1

ni
j=2

log xPijCij, XP
2,∗ =

d
i=1

ni
j=2

log xPi,j−1Cij,

Bk =

d
i=1

ni
j=2

log B(k)
ij , Bk,∗ =

d
i=1

ni
j=2

log B(k)
ij Cij (k = 1, 2),

C =

d
i=1

ni
j=2

Cij, Z =


α −

σ 2

2


1 − e−β h

β
.
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After some algebra, from Eqs. (28) and (29), we obtain

XP
1 − e−β hX2 − (n − d)Z + (n − d)(1 − e−β h) log(η − µp + µq) = B2 − e−β hB1 (30)

and

XP
1,∗ − e−β hX2,∗ − C Z + C(1 − e−β h) log(η − µp + µq) = B2,∗ − e−β hB1,∗. (31)

From (30) we have

log(η − µp + µq) =
B2 − e−η hB1 + (n − d)Z − XP

1 + e−β hXP
2

(n − d)

1 − e−β h

 (32)

and substituting in (31) we conclude

(n − d)

B2,∗ − XP

1,∗ + e−β h XP
2,∗ − B1,∗


+ C


XP
1 − B2 + e−β h(B1 − XP

2 )


= 0. (33)

The last equation does not have an explicit solution with respect toµq, so the estimation ofµq can be obtained by numerical
methods. Once the estimation of µq is obtained, η − µp can be estimated through (32).

4.2. A method based on linear regression for estimating the parameters of P(t)

As already point out in Section 3.1 the process P(t) has the form of the process XC (t) defined in (12) when C(t) ≡ G(t)
defined in (13). So the function G(t) can be estimated using the technique suggested in Albano et al. (2011).

This technique is based on the following relation between the mean of the process in the absence of therapy, i.e. X(t),
and that of the process in the presence of a therapy, i.e. XC (t):

E

XC (t)


E [X(t)]

= exp


−e−βt
 t

t0
C(θ)eβθ dθ


from which

C(t) = −e−βt d
dt


eβt log


E

XC (t)


E [X(t)]


.

This last expression suggests a method to find an approximation of the function C(t) based on the following procedure:
• From observed data of the process X(t), estimate the parameters α, β and σ 2, by using themaximum likelihoodmethod.

From this first step we obtain the ML estimatorsα,β andσ 2.
• Denoting by xi and xCi the mean tumor size at time ti in the control group, modeling by X(t), and in the treated group,

modeling by XC (t), respectively, obtain the functionm(t) by the interpolation of values

mi = eβti log

xCi
xi


.

• Finally, consider the following function as an approximation of C(t):C(t) = −m′(t)e−βt .

Then, from (26), we consider the ordinary differential equation
ρ ′(t)
ρ(t)

+ β log ρ(t) = −G(t)

with the initial condition

ρ(t0) = P(t0)/X(t0)

whose solution is

ρ(t) = exp

e−β (t−t0)


log ρ(t0) −

 t

t0
G(s)eβ (s−t0) ds


. (34)

Moreover from (8) we obtain:

ρ(t)(η − µp + µq) − µq = α e−β t ,

showing a straight line relation between the values of ρ(t) and α e−β t . So, we consider a linear regression between these
two variables:

Y = a + bX + ϵ (35)

where a = −µq and b = η − µp + µq, being α e−β ti (i = 1, . . . , n) the values of the dependent variable Y and ρ(ti) the
corresponding values of the independent variable X . Obviously, µq = −a and η − µp =b +a.
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Fig. 2. Example 1. Difference between ML and regression errors. We choose η − µp = 0.5.

So the suggested procedure to estimate µq and η − µp is the following:
• estimate the parameters α, β and σ of the process X(t) by using ML method;
• estimate G(t) defined in (26) by using the fitting procedure of Albano et al. (2011);
• estimate the parameters a = −µq and b = η − µp + µq in the linear regression (35) by ordinary least squares.

5. Numerical results

In this section we compare the two proposed methods to estimate the parameters of the process P(t). In particular, we
consider two examples: the first one consisting of a study based on the simulation of the paths of the process X(t); in the
second one real data are considered. In both the cases the estimation of the parameters in the process X(t), i.e. α, β and
σ , is performed a priori via ML method. Then the estimation of the parameters in P(t), i.e. µq and η − µp, is obtained by
applying the two proposed procedures. The comparison is finallymade by considering the sumof the relative absolute errors
of estimation for each parameter, that is

E =
|µq − µq|

µq
+

| η − µp − (η − µp)|

η − µp
.

5.1. Example 1: simulation study

The paths of the process X(t) are simulated by fixing the values of α and β , whereas several values for σ are chosen. The
corresponding values in P(t) are obtained by using the relation (20) and by considering a range of values for η, µp and µq.

In particular, we choose α = 0.3, β = 0.1 and σ = 0.02 j (j = 1, . . . , 5), whereas the process P(t) is obtained from (20)
choosing in (8) η = 0.8 + 0.1 j and µq = µp = 0.1 + 0.1 j (j = 0, . . . , 3). For the process X(t), 100 sample paths, with 501
values each one, are simulated taking t0 = 0, ti − ti−1 = 0.1, i = 1, . . . , 500, and choosing an initial lognormal distribution
Λ1(1; 0.2). For each choice of the parameters α, β and σ theML estimation is obtained. Then, by considering these values as
fixed, the estimation for the parameters of P(t), that is, µq and η −µp, is realized by applying the two proposed procedures.

In Table 1 several values of η − µp and µq are considered and the estimation of the parameters carried out by the two
procedures as well as the related errors are shown.

In Table 1, the value of η − µp is fixed. Moreover, in order to analyze the effect of the variability on the results, various
values of σ are chosen.

The numerical results seem to show that the regression-based method works better than the ML estimation. Only for
µq = 0.1, and σ = 0.02 or σ = 0.04, that is when the paths are characterized by a small variability, we can observe a little
improvement in theML estimation, but this trend is not general. Indeed, the regressionmethod allows to obtain estimations
closer to the real values of the parameters as we can see from the last two columns of the tables where the errors above
defined are listed. Moreover, the ML errors increases as µq increases, whereas the regression error exhibits a slow decrease
as µq increases.

In Fig. 2 the difference between the error in the ML procedure and that one in the regression-based method as a function
of σ is plotted for different values of µq. In all the curves we choose η − µp = 0.5. A similar trend can be observed for
different values of η − µp. Moreover as σ increases the difference between the errors gets bigger and bigger, so it seems
that the performance of the regression-based method improves when the variability in the paths of the processes P(t)
and X(t) increases. Now we consider the case in which σ is fixed. More precisely in Table 2 we choose σ = 0.02 (small
variability) whereas in Table 3 it is σ = 0.1 (large variability). As before, also in these cases the regression method provides
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Table 1
Example 1. Estimated values and errors for some combinations of the parameters.

True value ML estimation Regr. estimation Errors
η − µp µq σ µq η − µp µq η − µp ML error Reg. error

0.4 0.1 0.02 0.09899 0.39848 0.09818 0.39606 0.01380 0.02803
0.04 0.09481 0.38839 0.09448 0.38837 0.08084 0.08417
0.06 0.08810 0.37161 0.08901 0.37714 0.18995 0.16694
0.08 0.07971 0.35074 0.08190 0.36271 0.32603 0.27417
0.1 0.07048 0.32835 0.07331 0.34550 0.47427 0.40306

0.2 0.02 0.19566 0.39355 0.19702 0.39606 0.03780 0.02469
0.04 0.18032 0.36861 0.19106 0.38837 0.17684 0.07376
0.06 0.15803 0.33204 0.18225 0.37714 0.37972 0.14587
0.08 0.13320 0.29134 0.17082 0.36271 0.60561 0.23907
0.1 0.10903 0.25204 0.15708 0.34550 0.82469 0.35083

0.3 0.02 0.28877 0.38726 0.29587 0.39606 0.06927 0.02358
0.04 0.25432 0.34677 0.28763 0.38837 0.28530 0.07029
0.06 0.20996 0.29453 0.27548 0.37714 0.56378 0.13885
0.08 0.16633 0.24336 0.25975 0.36271 0.83715 0.22737
0.1 0.12843 0.19928 0.24084 0.34550 1.07365 0.33342

0.4 0.02 0.37732 0.37963 0.39472 0.39606 0.10761 0.02302
0.04 0.31632 0.32387 0.38420 0.38837 0.39950 0.06855
0.06 0.24705 0.26072 0.36871 0.37714 0.73054 0.13533
0.08 0.18629 0.20569 0.34867 0.36271 1.02002 0.22152
0.1 0.13807 0.16249 0.32460 0.34550 1.24857 0.32472

0.5 0.1 0.02 0.09899 0.49798 0.09818 0.49491 0.01405 0.02837
0.04 0.09481 0.48503 0.09448 0.48494 0.08176 0.08521
0.06 0.08810 0.46356 0.08901 0.47037 0.19187 0.16904
0.08 0.07971 0.43683 0.08190 0.45163 0.32922 0.27768
0.1 0.07048 0.40812 0.07331 0.42926 0.47891 0.40828

0.2 0.02 0.19566 0.49175 0.19702 0.49491 0.03818 0.02503
0.04 0.18032 0.46010 0.19106 0.48494 0.17817 0.07480
0.06 0.15803 0.41372 0.18225 0.47037 0.38238 0.14798
0.08 0.13320 0.36210 0.17082 0.45163 0.60977 0.24258
0.1 0.10903 0.31222 0.15708 0.42926 0.83035 0.35606

0.3 0.02 0.28877 0.48384 0.29587 0.49491 0.06974 0.02391
0.04 0.25432 0.43264 0.28763 0.48494 0.28694 0.07133
0.06 0.20996 0.36660 0.27548 0.47037 0.56691 0.14095
0.08 0.16633 0.30188 0.25975 0.45163 0.84178 0.23088
0.1 0.12843 0.24610 0.24084 0.42926 1.07966 0.33865

0.4 0.02 0.37732 0.47425 0.39472 0.49491 0.10819 0.02336
0.04 0.31632 0.40390 0.38420 0.48494 0.40139 0.06959
0.06 0.24705 0.32419 0.36871 0.47037 0.73396 0.13744
0.08 0.18629 0.25469 0.34867 0.45163 1.02487 0.22503
0.1 0.13807 0.20006 0.32460 0.42926 1.25467 0.32994

0.6 0.1 0.02 0.09899 0.59748 0.09818 0.59376 0.01422 0.02859
0.04 0.09481 0.58167 0.09448 0.58151 0.08237 0.08590
0.06 0.08810 0.55550 0.08901 0.56361 0.19315 0.17045
0.08 0.07971 0.52292 0.08190 0.54056 0.33135 0.28002
0.1 0.07048 0.48789 0.07331 0.51302 0.48200 0.41176

0.2 0.02 0.19566 0.58995 0.19702 0.59376 0.03842 0.02525
0.04 0.18032 0.55159 0.19106 0.58151 0.17906 0.07549
0.06 0.15803 0.49540 0.18225 0.56361 0.38416 0.14938
0.08 0.13320 0.43286 0.17082 0.54056 0.61254 0.24492
0.1 0.10903 0.37240 0.15708 0.51302 0.83413 0.35954

0.3 0.02 0.28877 0.58041 0.29587 0.59376 0.07006 0.02413
0.04 0.25432 0.51851 0.28763 0.58151 0.28804 0.07202
0.06 0.20996 0.43867 0.27548 0.56361 0.56899 0.14236
0.08 0.16633 0.36041 0.25975 0.54056 0.84486 0.23322
0.1 0.12843 0.29292 0.24084 0.51302 1.08366 0.34213

0.4 0.02 0.37732 0.56886 0.39472 0.59376 0.10857 0.02358
0.04 0.31632 0.48392 0.38420 0.58151 0.40264 0.07029
0.06 0.24705 0.38766 0.36871 0.56361 0.73623 0.13885
0.08 0.18629 0.30369 0.34867 0.54056 1.02811 0.22737
0.1 0.13807 0.23763 0.32460 0.51302 1.25874 0.33342

(continued on next page)



1732 G. Albano et al. / Computational Statistics and Data Analysis 56 (2012) 1723–1736

Table 1 (continued)

True value ML estimation Regr. estimation Errors
η − µp µq σ µq η − µp µq η − µp ML error Reg. error

0.7 0.1 0.02 0.09899 0.69697 0.09818 0.69260 0.01434 0.02875
0.04 0.09481 0.67832 0.09448 0.67808 0.08280 0.08640
0.06 0.08810 0.64744 0.08901 0.65684 0.19407 0.17145
0.08 0.07971 0.60901 0.08190 0.62948 0.33287 0.28169
0.1 0.07048 0.56765 0.07331 0.59679 0.48421 0.41425

0.2 0.02 0.19566 0.68816 0.19702 0.69260 0.03860 0.02541
0.04 0.18032 0.64308 0.19106 0.67808 0.17969 0.07599
0.06 0.15803 0.57708 0.18225 0.65684 0.38542 0.15038
0.08 0.13320 0.50362 0.17082 0.62948 0.61452 0.24659
0.1 0.10903 0.43258 0.15708 0.59679 0.83682 0.36202

0.3 0.02 0.28877 0.67699 0.29587 0.69260 0.07029 0.02429
0.04 0.25432 0.60439 0.28763 0.67808 0.28882 0.07252
0.06 0.20996 0.51074 0.27548 0.65684 0.57048 0.14336
0.08 0.16633 0.41894 0.25975 0.62948 0.84707 0.23489
0.1 0.12843 0.33974 0.24084 0.59679 1.08653 0.34462

0.4 0.02 0.37732 0.66348 0.39472 0.69260 0.10885 0.02374
0.04 0.31632 0.56395 0.38420 0.67808 0.40354 0.07078
0.06 0.24705 0.45114 0.36871 0.65684 0.73786 0.13985
0.08 0.18629 0.35269 0.34867 0.62948 1.03042 0.22904
0.1 0.13807 0.27520 0.32460 0.59679 1.26164 0.33591

0.8 0.1 0.02 0.09899 0.79647 0.09818 0.79145 0.01443 0.02887
0.04 0.09481 0.77496 0.09448 0.77465 0.08313 0.08677
0.06 0.08810 0.73939 0.08901 0.75007 0.19475 0.17220
0.08 0.07971 0.69510 0.08190 0.71840 0.33401 0.28295
0.1 0.07048 0.64742 0.07331 0.68055 0.48587 0.41612

0.2 0.02 0.19566 0.78636 0.19702 0.79145 0.03873 0.02553
0.04 0.18032 0.73457 0.19106 0.77465 0.18016 0.07636
0.06 0.15803 0.65875 0.18225 0.75007 0.38637 0.15114
0.08 0.13320 0.57438 0.17082 0.71840 0.61600 0.24785
0.1 0.10903 0.49276 0.15708 0.68055 0.83885 0.36389

0.3 0.02 0.28877 0.77356 0.29587 0.79145 0.07046 0.02441
0.04 0.25432 0.69026 0.28763 0.77465 0.28941 0.07289
0.06 0.20996 0.58281 0.27548 0.75007 0.57160 0.14411
0.08 0.16633 0.47747 0.25975 0.71840 0.84872 0.23615
0.1 0.12843 0.38656 0.24084 0.68055 1.08867 0.34648

0.4 0.02 0.37732 0.75810 0.39472 0.79145 0.10905 0.02386
0.04 0.31632 0.64397 0.38420 0.77465 0.40422 0.07116
0.06 0.24705 0.51461 0.36871 0.75007 0.73908 0.14060
0.08 0.18629 0.40168 0.34867 0.71840 1.03215 0.23030
0.1 0.13807 0.31277 0.32460 0.68055 1.26382 0.33778

0.9 0.1 0.02 0.09899 0.89597 0.09818 0.89030 0.01450 0.02896
0.04 0.09481 0.87160 0.09448 0.87123 0.08338 0.08706
0.06 0.08810 0.83133 0.08901 0.84331 0.19529 0.17279
0.08 0.07971 0.78119 0.08190 0.80733 0.33489 0.28392
0.1 0.07048 0.72719 0.07331 0.76431 0.48716 0.41757

0.2 0.02 0.19566 0.88456 0.19702 0.89030 0.03884 0.02562
0.04 0.18032 0.82606 0.19106 0.87123 0.18053 0.07665
0.06 0.15803 0.74043 0.18225 0.84331 0.38711 0.15172
0.08 0.13320 0.64514 0.17082 0.80733 0.61716 0.24882
0.1 0.10903 0.55294 0.15708 0.76431 0.84042 0.36534

0.3 0.02 0.28877 0.87014 0.29587 0.89030 0.07060 0.02451
0.04 0.25432 0.77613 0.28763 0.87123 0.28987 0.07318
0.06 0.20996 0.65488 0.27548 0.84331 0.57246 0.14470
0.08 0.16633 0.53600 0.25975 0.80733 0.85001 0.23712
0.1 0.12843 0.43337 0.24084 0.76431 1.09034 0.34793

0.4 0.02 0.37732 0.85272 0.39472 0.89030 0.10921 0.02395
0.04 0.31632 0.72400 0.38420 0.87123 0.40474 0.07144
0.06 0.24705 0.57808 0.36871 0.84331 0.74003 0.14119
0.08 0.18629 0.45068 0.34867 0.80733 1.03350 0.23127
0.1 0.13807 0.35034 0.32460 0.76431 1.26552 0.33923

1 0.1 0.02 0.09899 0.99547 0.09818 0.98915 0.01455 0.02904
0.04 0.09481 0.96824 0.09448 0.96780 0.08358 0.08729
0.06 0.08810 0.92327 0.08901 0.93654 0.19571 0.17326
0.08 0.07971 0.86728 0.08190 0.89625 0.3356 0.28470
0.1 0.07048 0.80696 0.07331 0.84808 0.48819 0.41873
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Table 1 (continued)

True value ML estimation Regr. estimation Errors
η − µp µq σ µq η − µp µq η − µp ML error Reg. error

0.2 0.02 0.19566 0.98276 0.19702 0.98915 0.03892 0.02569
0.04 0.18032 0.91755 0.19106 0.96780 0.18083 0.07688
0.06 0.15803 0.82211 0.18225 0.93654 0.38771 0.15219
0.08 0.13320 0.71589 0.17082 0.89625 0.61808 0.24960
0.1 0.10903 0.61312 0.15708 0.84808 0.84168 0.36650

0.3 0.02 0.28877 0.96672 0.29587 0.98915 0.07070 0.02458
0.04 0.25432 0.86200 0.28763 0.96780 0.29023 0.07341
0.06 0.20996 0.72695 0.27548 0.93654 0.57316 0.14517
0.08 0.16633 0.59452 0.25975 0.89625 0.85103 0.23790
0.1 0.12843 0.48019 0.24084 0.84808 1.09168 0.34909

0.4 0.02 0.37732 0.94734 0.39472 0.98915 0.10934 0.02402
0.04 0.31632 0.80402 0.38420 0.96780 0.40516 0.07168
0.06 0.24705 0.64155 0.36871 0.93654 0.74079 0.14166
0.08 0.18629 0.49968 0.34867 0.89625 1.03458 0.23205
0.1 0.13807 0.38792 0.3246 0.84808 1.26688 0.34039

Table 2
Example 1. Estimated values and errors for some combinations of the parameters. σ = 0.02.

True value ML estimation Regr. estimation Errors
η − µp µq µq η − µp µq η − µp ML error Reg. error

0.4 0.1 0.09899 0.39848 0.09818 0.39606 0.01380 0.02803
0.2 0.19566 0.39355 0.19702 0.39606 0.03780 0.02469
0.3 0.28877 0.38726 0.29587 0.39606 0.06927 0.02358
0.4 0.37732 0.37963 0.39472 0.39606 0.10761 0.02302

0.5 0.1 0.09899 0.49798 0.09818 0.49491 0.01405 0.02837
0.2 0.19566 0.49175 0.19702 0.49491 0.03818 0.02503
0.3 0.28877 0.48384 0.29587 0.49491 0.06974 0.02391
0.4 0.37732 0.47425 0.39472 0.49491 0.10819 0.02336

0.6 0.1 0.09899 0.59748 0.09818 0.59376 0.01422 0.02859
0.2 0.19566 0.58995 0.19702 0.59376 0.03842 0.02525
0.3 0.28877 0.58041 0.29587 0.59376 0.07006 0.02413
0.4 0.37732 0.56886 0.39472 0.59376 0.10857 0.02358

0.7 0.1 0.09899 0.69697 0.09818 0.69260 0.01434 0.02875
0.2 0.19566 0.68816 0.19702 0.69260 0.03860 0.02541
0.3 0.28877 0.67699 0.29587 0.69260 0.07029 0.02429
0.4 0.37732 0.66348 0.39472 0.69260 0.10885 0.02374

0.8 0.1 0.09899 0.79647 0.09818 0.79145 0.01443 0.02887
0.2 0.19566 0.78636 0.19702 0.79145 0.03873 0.02553
0.3 0.28877 0.77356 0.29587 0.79145 0.07046 0.02441
0.4 0.37732 0.75810 0.39472 0.79145 0.10905 0.02386

0.9 0.1 0.09899 0.89597 0.09818 0.89030 0.01450 0.02896
0.2 0.19566 0.88456 0.19702 0.89030 0.03884 0.02562
0.3 0.28877 0.87014 0.29587 0.89030 0.07060 0.02451
0.4 0.37732 0.85272 0.39472 0.89030 0.10921 0.02395

1 0.1 0.09899 0.99547 0.09818 0.98915 0.01455 0.02904
0.2 0.19566 0.98276 0.19702 0.98915 0.03892 0.02569
0.3 0.28877 0.96672 0.29587 0.98915 0.07070 0.02458
0.4 0.37732 0.94734 0.39472 0.98915 0.10934 0.02402

better estimations than theML procedure. Moreover the errors of both the procedures show a similar trend for the different
choices of η − µp. Further, for fixed values of η − µp, the ML error increases as µq increases whereas the regression error
holds essentially constant, showing a negligible decrease. This is more evident in Fig. 3 in which the ML and the regression
errors are plotted as functions of µq in the cases σ = 0.04 (on the left) and σ = 0.08 (on the right).

Indeed, as shown in Table 2, for the regression method, the estimations of η − µp are the same for each value of µq
whereas those for µq show a little variation. Same conclusions can be drawn from Table 3 although in it the errors are
bigger.

5.2. Example 2: application to real data

In this subsection we focus on an experimental study in breast cancer xenografts illustrated from the authors in a recent
paper (see Albano et al., 2011). It was observed the growth of BC297MONp5 from an experimental group of mice. The
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Table 3
Example 1. Estimated values and errors for some combinations of the parameters. σ = 0.1.

True value ML estimation Regr. estimation Errors
η − µp µq µq η − µp µq η − µp ML error Reg. error

0.4 0.1 0.07048 0.32835 0.07331 0.34550 0.47427 0.40306
0.2 0.10903 0.25204 0.15708 0.34550 0.82469 0.35083
0.3 0.12843 0.19928 0.24084 0.34550 1.07365 0.33342
0.4 0.13807 0.16249 0.32460 0.34550 1.24857 0.32472

0.5 0.1 0.07048 0.40812 0.07331 0.42926 0.47891 0.40828
0.2 0.10903 0.31222 0.15708 0.42926 0.83035 0.35606
0.3 0.12843 0.24610 0.24084 0.42926 1.07966 0.33865
0.4 0.13807 0.20006 0.32460 0.42926 1.25467 0.32994

0.6 0.1 0.07048 0.48789 0.07331 0.51302 0.48200 0.41176
0.2 0.10903 0.37240 0.15708 0.51302 0.83413 0.35954
0.3 0.12843 0.29292 0.24084 0.51302 1.08366 0.34213
0.4 0.13807 0.23763 0.32460 0.51302 1.25874 0.33342

0.7 0.1 0.07048 0.56765 0.07331 0.59679 0.48421 0.41425
0.2 0.10903 0.43258 0.15708 0.59679 0.83682 0.36202
0.3 0.12843 0.33974 0.24084 0.59679 1.08653 0.34462
0.4 0.13807 0.27520 0.32460 0.59679 1.26164 0.33591

0.8 0.1 0.07048 0.64742 0.07331 0.68055 0.48587 0.41612
0.2 0.10903 0.49276 0.15708 0.68055 0.83885 0.36389
0.3 0.12843 0.38656 0.24084 0.68055 1.08867 0.34648
0.4 0.13807 0.31277 0.32460 0.68055 1.26382 0.33778

0.9 0.1 0.07048 0.72719 0.07331 0.76431 0.48716 0.41757
0.2 0.10903 0.55294 0.15708 0.76431 0.84042 0.36534
0.3 0.12843 0.43337 0.24084 0.76431 1.09034 0.34793
0.4 0.13807 0.35034 0.32460 0.76431 1.26552 0.33923

1 0.1 0.07048 0.80696 0.07331 0.84808 0.48819 0.41873
0.2 0.10903 0.61312 0.15708 0.84808 0.84168 0.36650
0.3 0.12843 0.48019 0.24084 0.84808 1.09168 0.34909
0.4 0.13807 0.38792 0.3246 0.84808 1.26688 0.34039
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Fig. 3. Example 1. ML and regression errors for the cases σ = 0.04 (a) and σ = 0.08. In both cases, η − µp = 0.7.

estimations of the parameters, measured in [days]−1, in the process X(t) were (see Albano et al., 2011)

α = 0.112784, β = 0.0184158, σ 2 = 0.010992.

As regards the process P(t), we choose η = 0.7 andµp = µq = 0.1. Further, three values for σ are considered: 0.01, 0.05
and 0.1, i.e. the estimated value of σ in the above mentioned study. Table 4 summarizes the results. When σ = 0.01 (that
is, the trajectories have a small variability), both procedures provide good estimations, although the error in the regression-
based procedure is smallest. Nevertheless, the situation is quite different for the other values of σ . Indeed, when σ = 0.05
the estimations obtained from the regression method are clearly better than those ones obtained from the ML procedure
(the difference between the errors is substantial). Finally, when σ = 0.1 the ML method provides an estimation of µq that
is less than zero, that is an inadmissible value of µq.

In Fig. 4 the likelihood equation (33) is plotted as function of µq choosing σ = 0.05 (on the left) and σ = 0.1 (on the
right). Note that the difference between the ML estimate and the real value of µq increases as σ increases.
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Table 4
Example 2. Estimated values and errors. η = 0.7, µp = µq = 0.1.

ML estimation Regr. estimation Errors
σ µq η − µp µq η − µp ML error Reg. error

0.01 0.094810 0.573896 0.103629 0.601960 0.095404 0.039556
0.05 0.035460 0.307715 0.098126 0.586658 1.132540 0.040970
0.1 −0.013472 0.127034 0.071567 0.511487 1.923000 0.431842

0.05 0.10 0.15 0.20
 
µq µq
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Fig. 4. Example 2. Likelihood equation (33) for µq for σ = 0.05 (a) and σ = 0.1 (b).

6. Concluding remarks

In this work a two-compartmentmodel to describe tumor dynamics is discussed.More precisely, the tumor population is
split in a proliferating and a quiescent compartment, the first one characterized by a non-negative birth rate and the second
one characterized by a zero birth rate. The transitions between the two compartment are regulated by two positive rates,
generally depending on thewhole tumor size. The estimation of involved rates in the proliferative and quiescent populations
is performed using two different procedures: the first one consisting in ML method and the second one based on the linear
regression. A simulation study and an application to real data permit to argue that the regression-basedmethodworks better
with respect the ML method.

We point out that this work opens the way to a further generalization in the estimation of the growth rates in tumor
dynamics so to better understand how a therapy protocol acts on different compartments in a tumor population. Indeed, a
therapy protocol leads to a change of the growth rates in the tumor population X(t) and consequently in the proliferating
and quiescent populations. So a procedure to estimate the involved rates permits to compare different protocols through
the analysis of experimental data obtained from in vitro studies.
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