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1. Introduction

Tumor growth has received in the past three decades an increasing interest in medical and more generally in scientific
fields. From a mathematical point of view, arrangements of growth models able to describe more and more fine aspects
of tumor growth have occurred. Between the proposed models, very popular are these ones based on ordinary differential
equations (de Pillis et al., 2009; Parfitt and Fyhrie, 1997; Sachs et al., 2001). Moreover, the model that seems better to
fit experimental data is the Gompertz model, since it is able to include an incoming lack of nutrients for cancer cells
(Castorina and Zappala, 2006; de Vladar et al., 2003; de Vladar and Gonzalez, 2004). Further, the response of tumor to an
antiangiogenetic treatment is still a challenging issue, so the introduction of more and more realistic terms representing
the effect of a therapy in tumor growth is a fundamental problem in such fields. Really, it is reasonable to suppose that a
therapy is able to modify the growth rates of the tumor population. On the other hand, it is known that tumor presents
different behaviors, so it appears natural to suppose that an antiangiogenetic treatment acts in different ways on the
subpopulations. More precisely, in the prevascular phase in the absence of tumor host interactions, the tumor mass shows
three layers: necrotic core (laying in the center of tumor), quiescent (non-proliferating) cells and proliferating cells (Cameron
et al., 1997, 2001; Feizabadi et al., 2008; Freyer and Sutherland, 1986; Kozusko and Bajzer, 2003; Kozusko and Bourdeau,
2007). Quiescent population is characterized by a null-growth rate, but interactions with proliferative cells are possible,
i.e. transition rates between the two populations are possible.

In Albano and Giorno (2006), the authors introduced a stochastic model based on the Gompertz deterministic growth
to describe the dynamics of a tumor population obtaining a diffusion process characterized by lognormal transition
density. In the second instance, the drift of the process was modified introducing an exogenous term representing the
effect of an antiangiogenetic therapy. More precisely, they assumed that the therapy is able to modify the growth rate of
the tumor.
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Afterward, in Albano and Giorno (2008) dynamics of the proliferative and quiescent subpopulations was studied by
means of two diffusions. This approach permitted to include in the model the effect of two classical therapy protocols:
specific-cycle acting only on the proliferative cells and non-specific-cycle drugs able to destroy both the proliferative and
the quiescent populations.

In this paper, we focus on the inference of the parameters of the model. A first step in this sense was made in Albano
et al. (2011) where a methodology to fit the effect of a therapy on the whole population was proposed. More precisely, we
propose two methodologies to estimate the rates of the proliferative and quiescent populations.

In Section 2 the deterministic models for the involved tumor populations are briefly introduced. In particular we derive
some useful relations between the two subpopulations, proliferative and quiescent. Moreover an explicit expression is
derived for the net-transition rate function. In Section 3 a stochastic generalization of the model is presented, discussing the
main characteristics of the diffusion processes representing the tumor populations. In Section 4 estimation of the rates of the
two subpopulations is discussed when longitudinal data are available. To this end, two estimation methods are considered:
the first one consisting in maximum likelihood method and the second one based on linear regression. Finally, in Section 5,
some simulation results and an application to real data are presented in order to show and compare the validity of the
procedures presented.

2. The deterministic model

Let us denote by ty the initial time, i.e. the time of diagnosis of the disease, and let y(t) be the tumor size at time
t (t > to > 0). Generally, y(tp) = 1; anyway, we can consider the tumor size normalized with respect the initial one,
i.e. x(t) = y(t)/y(to). Let us assume that dynamics of the population x(t) is described by the following deterministic
Gompertz-type equation:

x(t) = [a — Blogx(Ox(1),  x(to) =1 (t = to), (1)

where « and 8 are positive constants representing the birth rate and the death rate of the tumor population, respectively;
their measurement units are [time]~". The solution of (1) is

x(t) = exp {% [1- e"s“_t‘”]} (2)

characterizing a Gompertz curve. For simplicity, in the following we will assume t; = 0.

We point out that Eq. (1) describes an undiversified tumor-mass, i.e. it is assumed that tumor cells are all characterized by
the same proliferation rate. A natural generalization of the model (2) consists to incorporate the main biological phenomena
of a cellular population. In every cellular population we recognize three separate compartments in base of their proliferating
capability: (i) the compartment A constituted by proliferating cells, in phase G1 (GAP 1); (ii) the compartment B constituted
by quiescent cells, in phase GO (out cellular cycle); (iii) the compartment C which contains cells in necrosis or diversified.
By extending a previous model by Gyllenberg and Webb (see Gyllenberg and Webb (1989)), Kozusko and Bajzer (2003)
proposed a dynamic model for the populations of proliferating and quiescent cells in which the transition rates of the two
populations are functions of the total tumor population. Furthermore, the form of the two subpopulations emerges from the
assumption that the total population is governed by the Gompertz equation. Many authors have showed the usefulness of
the Gompertz law determined by (1) in this sense. For example, Helmlinger et al. (1997) remark that this law is able to model
the evolution in vitro of multicellular tumor spheroids and apply it to demonstrate that solids stress inhibits their growth.
Recently, D’Onofrio et al. (2011) have presented a new extension of Gompertz law for tumor growth compatible with the
two-compartment model. For this model, denoting by p(t) and q(t) the sizes of proliferating and quiescent populations on
the time t, we have:

x(t) = p(t) + q(t). (3)

Following Kozusko and Bajzer (2003) and Kozusko and Bourdeau (2007) we assume that the proliferating and quiescent
populations dynamics are described from the scheme of Fig. 1. More precisely, the parameters u, > 0and j14 > 0 represent
the death rates for the proliferating and quiescent cells, respectively and n > 0 denotes the birth rate of the proliferating
population. Further, the functions rq(x) > 0 and r{(x) > 0 are the transition rates between the two populations and they
are assumed to be functions of the total number of cells. In particular, ro(x) characterizes the transitions from proliferative
subpopulation into quiescent one and r;(x) specifies the rate from the quiescent compartment into the proliferative one.
The scheme of Fig. 1 leads to the following relations:

p(&) = [n — pp — ro(X)Ip(t) + r1(x)q(t) (4)
and

q(t) = ro(X)p(t) — [r1(x) + rqlq(t). (3)
From (3), by using (4) and (5), one obtains:

() = p(O) +4(6) = [11 = wp] P(t) — g q(t)
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Fig. 1. Two-compartment model of cell population growth.

and from (3) it follows:

X(t) = [ — pp + g P(E) — pg (D). (6)
From (6), making use of definition (1), one has:

x(t)
p(t) = ———— [a — B logx(t) + 14l
N—p + Mg

that, recalling (2), can be written as

p(t) = p(O)x(t) (7)
where
—ﬂt
N — Hp+ Hq

denotes the fraction of the tumor mass that defines the proliferating subpopulation.
Note that (8) has to be a positive function. This leads to the following assumptions on the rates of the model:

n>Wp — MUq-

Further, from (3) or, equivalently, from (5), one has:

q®) = [1- p®)]x(®) 9)

that describes the size of the quiescent subpopulation in terms of the total tumor population size.

Let us observe that the transition rates ry(x) and r;(x) can be easily obtained as functions of the parameters 7, 1, and pq
as shown in Kozusko and Bajzer (2003).

We point out that here the total cancer population is viewed as a little net (cf. Fig. 1) with two nodes representing
the proliferating and quiescent subpopulations. It is interesting to analyze the net transition rate function defined as
follows:

D(x,t) = ro(X)p(t) — ri(x)q(t). (10)

Note that if @(x, t) is positive then the net transition rate is from the proliferating compartment into the quiescent
compartment; while, negative values of @ (x, t) mean a flow from quiescent subpopulation into proliferating subpopulation.
To evaluate the net transition rate we note that from definition (4), making use of (10), it follows:

p®) = [n — pplp(t) — @ (x, 1),

so, from (10), recalling (7), after some simple calculations one can obtain:

@(x. 1) = [n = wp]p(6) = p()
= 7n—zb(t)+.u {(hg+ee)(n—pp—ae ) +ape’} (11)
pt i

Eq. (11) indicates that the net transition rate is linear with respect to the whole population size.
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3. Generalizing the deterministic model
In order to overcome frequent discrepancies observed between clinical data and theoretical predictions, due to more or
less intense environmental fluctuations, we introduce the stochastic process {X(t), t > t, > 0}:
dX(t) = [aX(t) — BX(t) InX(t)]dt + o X (t) dW (t), (12)

where o is a positive constant representing the width of random fluctuations and W (t) is a standard Brownian motion.
The model (12) is obtained from (1) by introducing the stochastic term o X (t) d W (t). The process {X(t),t > to > O} isa
diffusion defined in I = (0, +00), characterized by drift and infinitesimal variance:

A1(x) = ax — Bxlogx, Ar(x) = o2 X2,

respectively. We point out that the effect of a antiangiogenetic therapy was modeled in Albano and Giorno (2006) via the
introduction of a time-dependent function C(t) in the drift term, giving rise to the following time non-homogeneous process:

dX (1) = {le — C(OIX () — BX(t) InX (6) } dt + o X (£) W (2). (13)
Let fx (x, t|y, T) be the transition probability density function (pdf) of X (t):

fx(x, tly, ) = %Pr[X(t) <xX(t)=y] x,yel,t>r1>ty).

It is solution of the Kolmogorov equation

Ay (x, t]y, T (X, tly, T o2 3% (x, tly, T
fx(x, tly )—i—[ozy—f}ylny] fx(x, tly, 7) L fx&, tly, ) _o, (14)
T dy 2 ay?
satisfying the initial delta condition:
lim fi (x. tly. 7) = 8(x = ).
In order to find the solution of the Eq. (14) we consider the transformation:
1 1
X =eft [logx—i— i] j=ef" [logy+i],
0?2 —«a 0%/2 —«a
et 27 (15)
t=—, 7= .
28 28

It reduces the diffusion equation (14) to the analogous one of the Wiener process X (t) with drift and infinitesimal variance
B] = 0, Bz = 0'2,

respectively. Denoting byf the transition pdf of X(t), we have
FG T, 7) =xe ™™ fix, tly, ©). (16)

Sincef is Gaussian with mean y and variance o2 (f — 7), making use of (15) and of (16), one has:

1 [logx — M(t|logy, T)*

Sxx, tly, 1) = ————=cexp {— ; (17)

* xy/2mo?(t|t) 202(t|T)
that is, [X(t)|X(t) = y] has a lognormal distribution A[M(t|logy, t); o%(t|7)], with

2\ 1 —e B=D)
M(tly, T) = e PED _Z
(tly,t) =e ytle-5 5

and

o’ (tlr) = - [1—e2PD]

28 '

Furthermore, the n-th moment (n = 1, 2, ...) of the process X (t) is:

EIX"(0)y, 7] = exp{n [M(t]logy. 7) + S o>t |]. (18)

From (18) it is immediate to obtain the conditional mean and the conditional variance of the process X (t):

EIX(0)]y, 7] = exp{ [M(t| logy, 7) + %Uz(th)]}
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and

Var[X(0)ly, 7] = exp[z M(t|logy, 7) + 02(t|1')} [exp{az(th')} - 1]. (19)

By the stochastic Gompertz-type equation (12) it is natural to generalize the models (7) and (9) of the previous section so
to obtain the following stochastic relations:

P(t) = p(DX() (20)

and

Q) = [1-p®OX(O. 21

We point out that in (20) and (21) the function p(t) is deterministic and specified in (8). So we are assuming that a
noise affects the whole tumor population X (t) and we are studying the consequences of this noise on the proliferating and
quiescent cells. This assumption seems reasonable since the most common diagnostic instruments are usually able to detect
the whole tumor volume X (t).

From (20) and (21), by Ito’s formula it is easy to obtain the stochastic differential equations governing the processes P(t)
and Q(t):

dP(t) = [Mt) +a—Blog P(t)] P(t) dt + o P(£)dW (f) (22)
p(t) p(t)
and
PO L e
aQ () = [— o e plog (t)} Q) de + o QOAW ), (23)

resulting that P(t) and Q (t) are diffusion processes defined in the interval (0, 00).
Moreover from (22) and (23) the infinitesimal moments of P(t) and Q (t) can be written, respectively, as follows:

AP(x, t) = [a — G(D)]x — Bxlogx,  Ab(x) = 0¥ (24)
and
AY(x, t) = [@ — H()]x — Bxlogx,  AY(x) = o2x?, (25)
where
6ty =D giogory and  HO) = LD Blogt - p(0). (26)
p(t) 1—p()

An interesting remark is the following: (24) and (25) suggest that the processes P(t) and Q (t) have the same form of the
process X (t) in (13) with C(t) = G(t) in the case of P(t) and C(t) = H(t) for Q ().

Finally, from (17), (20) and (21) by making the corresponding change of variables, we obtain the transition pdfs of the
processes P(t) and Q (t):

2
) [logx—logp(r) —M(f“og ﬁt)]
fP@xtly, 1) = —=—=——=—=exp | - -

X/ 2ma(t|T) 202(t|T)

and

2
1 [logx —logw(t) — M <t| log o5 f)]
fe@x tly, 1) = ——=—=exp { — .

X/ 2mwo(t|T) 202(t|T)

where w(t) = 1 — p(t).

We point out that by expressing the relations between the quiescent and proliferating subpopulations and the whole
population, we can study in a separate way the process P(t) and Q(t) even if they are strictly connected. Indeed, the
conditional covariance of the two subpopulations is

Cov[P(t), Q(1)ly, ] = Cov[p()X(), [1 — p(OIX(O)ly, ]
pO[1 = p(O]Var Xy, 7]

where Var [X(t) | y, t] is given in (19).
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4. Inference

In this section we will estimate the parameters of the processes P(t) and Q(t). We point out that the parameters
characterizing the whole population, @, $ and o can be estimate by maximum likelihood (ML) method (see Albano et al.,
2011) so only the estimations of u,, 114 and n are needed. In the following we provide two alternative methods for the
estimation of uq and n — u,, i.e. the growth net rate of the population P(t): ML method for the processes P(t) and Q (t) and
the second one based on the estimation of G(t) and H(t) defined in (26) and on a linear relation derived by (8).

4.1. Maximum likelihood estimation of the parameters of P(t)

In the following we will focus on the process P(t). An analogous procedure can be developed for Q (t). Let us consider a
discrete sampling of P(t), based on d sample paths, for times t, i=1,...,d,j=1,...,m) witht; =t;,i=1,...,dand

denote these values as {xg}ii1 FrE— For simplicity we will consider t;; — t; j_1 = h.
=1, dy=1,.m;

From (27), denoting n = Zle n; and x” the vector containing the xf;- values, and considering a lognormal initial
distribution P(t;) ~ A;(u1, 012), the log-likelihood function is

d i
dlogaz(h|0) Zlogx” Zilogxg

i=1 i=1 j=1

2 n d 2
log Ly (11, 07, 1, fp, tq) = —Elog(Zﬂ) - Elogal

d
—2 Z [log(xf; — /14)]2 2(h|0) ZZ (logx;; — M(h|logx{;_;,0))

1 i=1 i=1 j=1
2 _ 1 _ 2
— logB)” + e " log By’ + (1 — "™ log(n — py + o).
where
B(l) = g+ ae —Blij-1, Blsz) =g+ ae Plij-1+h
The parameters to estimate are 111, o, related to the initial distribution, and 1, 114 and n connected to the two-compartment

model. We consider «, 8 and o2 as fixed values; this means that the inference on P(t) is provided after the estimation of
X(t). The ML estimations of 4; and o are

d

d
~ 1 -
Z logxy, & =+ > (logxf, — 1),

i=1

Q \

Moreover, the likelihood equations for n and i, are equal, so it is possible to estimate g and n— u,. Concretely the following
system of equations can be obtained:

d n;
Z Z[logx — logB(z) M(h| logx” 1, 0)+ e hh logB;D +(1—ehfh log(n — up + ,uq)] =0 (28)
i=1 j=2
and
n
Z [logxg — logBEjz) M (h| logxU 10+ e hh logB,g-]) +(1—e Pl log(n — up + Mq)]cl'j =0 (29)
i=1 j=2
with G; = B(—lz) - (1) " We denote by
i By
d n; d n;
=3 Yl A=Y e,
i=1 j=2 i=1 j=2
d n; d n;
XL= 3 hosd, XL =3 s G
i=1 j=2 i=1 j=2
d n; d n;
Be=YlogB®, B =YY log¥c; k=12,
i=1 j=2 i=1 j=2

d ni o2\ 1—ehh
=330 z=(a-T) 12"
2 B

i=1 j=2
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After some algebra, from Egs. (28) and (29), we obtain
X —ePhXy, — (n—d)Z + (n—d)y(1 — e PM) log(n — 1p + 1) = By — e "By (30)
and
X, —e "X —CZ4+C—e M log(n — up + 1tg) = By — € #'By .. €2)
From (30) we have
By —e "By + (n—d)Z — X + e PhxP
(n—d)(1—eFh)

log(n — wp + 1g) =

and substituting in (31) we conclude
(n—d)[By — X;, +e " (Xy, —B1) ]+ C[X{ =By + e P"(B; —X3)] = 0. (33)

The last equation does not have an explicit solution with respect to 14, so the estimation of uq can be obtained by numerical
methods. Once the estimation of y, is obtained, n — p, can be estimated through (32).

4.2. A method based on linear regression for estimating the parameters of P(t)

As already point out in Section 3.1 the process P(t) has the form of the process X (t) defined in (12) when C(t) = G(t)
defined in (13). So the function G(t) can be estimated using the technique suggested in Albano et al. (2011).

This technique is based on the following relation between the mean of the process in the absence of therapy, i.e. X(t),
and that of the process in the presence of a therapy, i.e. X€(t):

E [Xc(t)] _ —pt ' 86
EXOL XO] = exp (—e /to C(9)e dG)
from which

g d E[X°()]
— _p Bt Bt ]
C(t) = —e ” {e log( EIXO)] )}

This last expression suggests a method to find an approximation of the function C(t) based on the following procedure:

o From observed data of the process X (t), estimate the parameters «, 8 and o2, by using the maximum likelihood method.
From this first step we obtain the ML estimators &, 8 and 2.
e Denoting by x; and xf the mean tumor size at time t; in the control group, modeling by X(t), and in the treated group,

modeling by X (t), respectively, obtain the function m(t) by the interpolation of values

C
- X

m; = e log <—’> .
Xi

e Finally, consider the following function as an approximation of C(t):
Ct) = —m'(t)e P,
Then, from (26), we consider the ordinary differential equation
p'(t)

p(t)
with the initial condition

p(to) = P(to) /X (to)
whose solution is

t
p(t) = exp (e_ﬂ(t_[") [log o(to) — / G(s)eP 6~ ds]) ) (34)

to

+ Blog p(t) = —G(t)

Moreover from (8) we obtain:
PO — 1p + pg) — g = et

showing a straight line relation between the values of p(t) and « e #¢. So, we consider a linear regression between these
two variables:

Y=a+bX+e (35)

wherea = —ugand b = n — u, + g, being e Pl (i = 1,..., n)the values of the dependent variable Y and p(t;) the
corresponding values of the independent variable X. Obviously, jz; = —aand n/—jp =b+a.
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Fig. 2. Example 1. Difference between ML and regression errors. We choose n — p, = 0.5.

So the suggested procedure to estimate uq and n — u, is the following:

e estimate the parameters «, 8 and o of the process X (t) by using ML method;
e estimate G(t) defined in (26) by using the fitting procedure of Albano et al. (2011);
e estimate the parameters a = —uq and b = n — up + g in the linear regression (35) by ordinary least squares.

5. Numerical results

In this section we compare the two proposed methods to estimate the parameters of the process P(t). In particular, we
consider two examples: the first one consisting of a study based on the simulation of the paths of the process X(t); in the
second one real data are considered. In both the cases the estimation of the parameters in the process X(t), i.e. «, 8 and
o, is performed a priori via ML method. Then the estimation of the parameters in P(t), i.e. ;g and n — (i, is obtained by
applying the two proposed procedures. The comparison is finally made by considering the sum of the relative absolute errors
of estimation for each parameter, that is

1o = ol I — iy — (0 — )|
Mq n— MUp

E =

5.1. Example 1: simulation study

The paths of the process X (t) are simulated by fixing the values of & and 8, whereas several values for o are chosen. The
corresponding values in P(t) are obtained by using the relation (20) and by considering a range of values for 7, up, and p4.

In particular, we choose« = 0.3,8 =0.1and o = 0.02j (j = 1, ..., 5), whereas the process P(t) is obtained from (20)
choosingin(8)n =0.8+0.1jand g = up =0.1+0.1j(j =0, ..., 3). For the process X(t), 100 sample paths, with 501
values each one, are simulated taking to = 0,t; — t;_1 = 0.1,i = 1, ..., 500, and choosing an initial lognormal distribution
A1(1; 0.2). For each choice of the parameters «, 8 and o the ML estimation is obtained. Then, by considering these values as
fixed, the estimation for the parameters of P(t), that is, 114 and n — 1, is realized by applying the two proposed procedures.

In Table 1 several values of n — i, and ji4 are considered and the estimation of the parameters carried out by the two
procedures as well as the related errors are shown.

In Table 1, the value of n — u,, is fixed. Moreover, in order to analyze the effect of the variability on the results, various
values of o are chosen.

The numerical results seem to show that the regression-based method works better than the ML estimation. Only for
g =0.1,and o = 0.02 or 0 = 0.04, that is when the paths are characterized by a small variability, we can observe a little
improvement in the ML estimation, but this trend is not general. Indeed, the regression method allows to obtain estimations
closer to the real values of the parameters as we can see from the last two columns of the tables where the errors above
defined are listed. Moreover, the ML errors increases as (14 increases, whereas the regression error exhibits a slow decrease
as (g increases.

In Fig. 2 the difference between the error in the ML procedure and that one in the regression-based method as a function
of ¢ is plotted for different values of (. In all the curves we choose n — u, = 0.5. A similar trend can be observed for
different values of n — u,. Moreover as o increases the difference between the errors gets bigger and bigger, so it seems
that the performance of the regression-based method improves when the variability in the paths of the processes P(t)
and X (t) increases. Now we consider the case in which o is fixed. More precisely in Table 2 we choose ¢ = 0.02 (small
variability) whereas in Table 3 itis 0 = 0.1 (large variability). As before, also in these cases the regression method provides
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Table 1
Example 1. Estimated values and errors for some combinations of the parameters.
True value ML estimation Regr. estimation Errors
n—p Hq o g n— Ip g n— [p ML error Reg. error
0.4 0.1 0.02 0.09899 0.39848 0.09818 0.39606 0.01380 0.02803
0.04 0.09481 0.38839 0.09448 0.38837 0.08084 0.08417
0.06 0.08810 0.37161 0.08901 037714 0.18995 0.16694
0.08 0.07971 0.35074 0.08190 0.36271 0.32603 0.27417
0.1 0.07048 0.32835 0.07331 0.34550 0.47427 0.40306
0.2 0.02 0.19566 0.39355 0.19702 0.39606 0.03780 0.02469
0.04 0.18032 0.36861 0.19106 0.38837 0.17684 0.07376
0.06 0.15803 0.33204 0.18225 0.37714 0.37972 0.14587
0.08 0.13320 0.29134 0.17082 0.36271 0.60561 0.23907
0.1 0.10903 0.25204 0.15708 0.34550 0.82469 0.35083
0.3 0.02 0.28877 0.38726 0.29587 0.39606 0.06927 0.02358
0.04 0.25432 0.34677 0.28763 0.38837 0.28530 0.07029
0.06 0.20996 0.29453 0.27548 0.37714 0.56378 0.13885
0.08 0.16633 0.24336 0.25975 0.36271 0.83715 0.22737
0.1 0.12843 0.19928 0.24084 0.34550 1.07365 0.33342
0.4 0.02 0.37732 0.37963 0.39472 0.39606 0.10761 0.02302
0.04 0.31632 0.32387 0.38420 0.38837 0.39950 0.06855
0.06 0.24705 0.26072 0.36871 0.37714 0.73054 0.13533
0.08 0.18629 0.20569 0.34867 0.36271 1.02002 0.22152
0.1 0.13807 0.16249 0.32460 0.34550 1.24857 0.32472
0.5 0.1 0.02 0.09899 0.49798 0.09818 0.49491 0.01405 0.02837
0.04 0.09481 0.48503 0.09448 0.48494 0.08176 0.08521
0.06 0.08810 0.46356 0.08901 0.47037 0.19187 0.16904
0.08 0.07971 0.43683 0.08190 0.45163 0.32922 0.27768
0.1 0.07048 0.40812 0.07331 0.42926 0.47891 0.40828
0.2 0.02 0.19566 0.49175 0.19702 0.49491 0.03818 0.02503
0.04 0.18032 0.46010 0.19106 0.48494 0.17817 0.07480
0.06 0.15803 0.41372 0.18225 0.47037 0.38238 0.14798
0.08 0.13320 0.36210 0.17082 0.45163 0.60977 0.24258
0.1 0.10903 0.31222 0.15708 0.42926 0.83035 0.35606
0.3 0.02 0.28877 0.48384 0.29587 0.49491 0.06974 0.02391
0.04 0.25432 0.43264 0.28763 0.48494 0.28694 0.07133
0.06 0.20996 0.36660 0.27548 0.47037 0.56691 0.14095
0.08 0.16633 0.30188 0.25975 0.45163 0.84178 0.23088
0.1 0.12843 0.24610 0.24084 0.42926 1.07966 0.33865
0.4 0.02 0.37732 0.47425 0.39472 0.49491 0.10819 0.02336
0.04 0.31632 0.40390 0.38420 0.48494 0.40139 0.06959
0.06 0.24705 0.32419 0.36871 0.47037 0.73396 0.13744
0.08 0.18629 0.25469 0.34867 0.45163 1.02487 0.22503
0.1 0.13807 0.20006 0.32460 0.42926 1.25467 0.32994
0.6 0.1 0.02 0.09899 0.59748 0.09818 0.59376 0.01422 0.02859
0.04 0.09481 0.58167 0.09448 0.58151 0.08237 0.08590
0.06 0.08810 0.55550 0.08901 0.56361 0.19315 0.17045
0.08 0.07971 0.52292 0.08190 0.54056 0.33135 0.28002
0.1 0.07048 0.48789 0.07331 0.51302 0.48200 0.41176
0.2 0.02 0.19566 0.58995 0.19702 0.59376 0.03842 0.02525
0.04 0.18032 0.55159 0.19106 0.58151 0.17906 0.07549
0.06 0.15803 0.49540 0.18225 0.56361 0.38416 0.14938
0.08 0.13320 0.43286 0.17082 0.54056 0.61254 0.24492
0.1 0.10903 0.37240 0.15708 0.51302 0.83413 0.35954
0.3 0.02 0.28877 0.58041 0.29587 0.59376 0.07006 0.02413
0.04 0.25432 051851 0.28763 0.58151 0.28804 0.07202
0.06 0.20996 0.43867 0.27548 0.56361 0.56899 0.14236
0.08 0.16633 0.36041 0.25975 0.54056 0.84486 0.23322
0.1 0.12843 0.29292 0.24084 0.51302 1.08366 0.34213
0.4 0.02 0.37732 0.56886 0.39472 0.59376 0.10857 0.02358
0.04 0.31632 0.48392 0.38420 0.58151 0.40264 0.07029
0.06 0.24705 0.38766 0.36871 0.56361 0.73623 0.13885
0.08 0.18629 0.30369 0.34867 0.54056 1.02811 0.22737
0.1 0.13807 0.23763 0.32460 0.51302 1.25874 0.33342

(continued on next page)
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Table 1 (continued)
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True value ML estimation Regr. estimation Errors
n— iy g o Ttq n— ip Ttq n— ip ML error Reg. error
0.7 0.1 0.02 0.09899 0.69697 0.09818 0.69260 0.01434 0.02875
0.04 0.09481 0.67832 0.09448 0.67808 0.08280 0.08640
0.06 0.08810 0.64744 0.08901 0.65684 0.19407 0.17145
0.08 0.07971 0.60901 0.08190 0.62948 0.33287 0.28169
0.1 0.07048 0.56765 0.07331 0.59679 0.48421 0.41425
0.2 0.02 0.19566 0.68816 0.19702 0.69260 0.03860 0.02541
0.04 0.18032 0.64308 0.19106 0.67808 0.17969 0.07599
0.06 0.15803 0.57708 0.18225 0.65684 0.38542 0.15038
0.08 0.13320 0.50362 0.17082 0.62948 0.61452 0.24659
0.1 0.10903 0.43258 0.15708 0.59679 0.83682 0.36202
0.3 0.02 0.28877 0.67699 0.29587 0.69260 0.07029 0.02429
0.04 0.25432 0.60439 0.28763 0.67808 0.28882 0.07252
0.06 0.20996 0.51074 0.27548 0.65684 0.57048 0.14336
0.08 0.16633 0.41894 0.25975 0.62948 0.84707 0.23489
0.1 0.12843 0.33974 0.24084 0.59679 1.08653 0.34462
0.4 0.02 0.37732 0.66348 0.39472 0.69260 0.10885 0.02374
0.04 0.31632 0.56395 0.38420 0.67808 0.40354 0.07078
0.06 0.24705 045114 0.36871 0.65684 0.73786 0.13985
0.08 0.18629 0.35269 0.34867 0.62948 1.03042 0.22904
0.1 0.13807 0.27520 0.32460 0.59679 1.26164 0.33591
0.8 0.1 0.02 0.09899 0.79647 0.09818 0.79145 0.01443 0.02887
0.04 0.09481 0.77496 0.09448 0.77465 0.08313 0.08677
0.06 0.08810 0.73939 0.08901 0.75007 0.19475 0.17220
0.08 0.07971 0.69510 0.08190 0.71840 0.33401 0.28295
0.1 0.07048 0.64742 0.07331 0.68055 0.48587 0.41612
0.2 0.02 0.19566 0.78636 0.19702 0.79145 0.03873 0.02553
0.04 0.18032 0.73457 0.19106 0.77465 0.18016 0.07636
0.06 0.15803 0.65875 0.18225 0.75007 0.38637 0.15114
0.08 0.13320 0.57438 0.17082 0.71840 0.61600 0.24785
0.1 0.10903 0.49276 0.15708 0.68055 0.83885 0.36389
0.3 0.02 0.28877 0.77356 0.29587 0.79145 0.07046 0.02441
0.04 0.25432 0.69026 0.28763 0.77465 0.28941 0.07289
0.06 0.20996 0.58281 0.27548 0.75007 0.57160 0.14411
0.08 0.16633 0.47747 0.25975 0.71840 0.84872 0.23615
0.1 0.12843 0.38656 0.24084 0.68055 1.08867 0.34648
0.4 0.02 0.37732 0.75810 0.39472 0.79145 0.10905 0.02386
0.04 0.31632 0.64397 0.38420 0.77465 0.40422 0.07116
0.06 0.24705 0.51461 0.36871 0.75007 0.73908 0.14060
0.08 0.18629 0.40168 0.34867 0.71840 1.03215 0.23030
0.1 0.13807 0.31277 0.32460 0.68055 1.26382 0.33778
0.9 0.1 0.02 0.09899 0.89597 0.09818 0.89030 0.01450 0.02896
0.04 0.09481 0.87160 0.09448 0.87123 0.08338 0.08706
0.06 0.08810 0.83133 0.08901 0.84331 0.19529 0.17279
0.08 0.07971 0.78119 0.08190 0.80733 0.33489 0.28392
0.1 0.07048 0.72719 0.07331 0.76431 0.48716 0.41757
0.2 0.02 0.19566 0.88456 0.19702 0.89030 0.03884 0.02562
0.04 0.18032 0.82606 0.19106 0.87123 0.18053 0.07665
0.06 0.15803 0.74043 0.18225 0.84331 0.38711 0.15172
0.08 0.13320 0.64514 0.17082 0.80733 0.61716 0.24882
0.1 0.10903 0.55294 0.15708 0.76431 0.84042 0.36534
0.3 0.02 0.28877 0.87014 0.29587 0.89030 0.07060 0.02451
0.04 0.25432 0.77613 0.28763 0.87123 0.28987 0.07318
0.06 0.20996 0.65488 0.27548 0.84331 0.57246 0.14470
0.08 0.16633 0.53600 0.25975 0.80733 0.85001 0.23712
0.1 0.12843 0.43337 0.24084 0.76431 1.09034 0.34793
0.4 0.02 0.37732 0.85272 0.39472 0.89030 0.10921 0.02395
0.04 0.31632 0.72400 0.38420 0.87123 0.40474 0.07144
0.06 0.24705 0.57808 0.36871 0.84331 0.74003 0.14119
0.08 0.18629 0.45068 0.34867 0.80733 1.03350 0.23127
0.1 0.13807 0.35034 0.32460 0.76431 1.26552 0.33923
1 0.1 0.02 0.09899 0.99547 0.09818 0.98915 0.01455 0.02904
0.04 0.09481 0.96824 0.09448 0.96780 0.08358 0.08729
0.06 0.08810 0.92327 0.08901 0.93654 0.19571 0.17326
0.08 0.07971 0.86728 0.08190 0.89625 0.3356 0.28470
0.1 0.07048 0.80696 0.07331 0.84808 0.48819 0.41873



G. Albano et al. / Computational Statistics and Data Analysis 56 (2012) 1723-1736 1733
Table 1 (continued)
True value ML estimation Regr. estimation Errors
n— p Hq o g 0 — 1% Ty 0 — 1% ML error Reg. error
0.2 0.02 0.19566 0.98276 0.19702 0.98915 0.03892 0.02569
0.04 0.18032 0.91755 0.19106 0.96780 0.18083 0.07688
0.06 0.15803 0.82211 0.18225 0.93654 0.38771 0.15219
0.08 0.13320 0.71589 0.17082 0.89625 0.61808 0.24960
0.1 0.10903 0.61312 0.15708 0.84808 0.84168 0.36650
0.3 0.02 0.28877 0.96672 0.29587 0.98915 0.07070 0.02458
0.04 0.25432 0.86200 0.28763 0.96780 0.29023 0.07341
0.06 0.20996 0.72695 0.27548 0.93654 0.57316 0.14517
0.08 0.16633 0.59452 0.25975 0.89625 0.85103 0.23790
0.1 0.12843 0.48019 0.24084 0.84808 1.09168 0.34909
0.4 0.02 0.37732 0.94734 0.39472 0.98915 0.10934 0.02402
0.04 0.31632 0.80402 0.38420 0.96780 0.40516 0.07168
0.06 0.24705 0.64155 0.36871 0.93654 0.74079 0.14166
0.08 0.18629 0.49968 0.34867 0.89625 1.03458 0.23205
0.1 0.13807 0.38792 0.3246 0.84808 1.26688 0.34039
Table 2
Example 1. Estimated values and errors for some combinations of the parameters. o = 0.02.
True value ML estimation Regr. estimation Errors
n— p Uq e n— iy e n— iy ML error Reg. error
0.4 0.1 0.09899 0.39848 0.09818 0.39606 0.01380 0.02803
0.2 0.19566 0.39355 0.19702 0.39606 0.03780 0.02469
0.3 0.28877 0.38726 0.29587 0.39606 0.06927 0.02358
0.4 0.37732 0.37963 0.39472 0.39606 0.10761 0.02302
0.5 0.1 0.09899 0.49798 0.09818 0.49491 0.01405 0.02837
0.2 0.19566 0.49175 0.19702 0.49491 0.03818 0.02503
0.3 0.28877 0.48384 0.29587 0.49491 0.06974 0.02391
0.4 0.37732 0.47425 0.39472 0.49491 0.10819 0.02336
0.6 0.1 0.09899 0.59748 0.09818 0.59376 0.01422 0.02859
0.2 0.19566 0.58995 0.19702 0.59376 0.03842 0.02525
0.3 0.28877 0.58041 0.29587 0.59376 0.07006 0.02413
0.4 0.37732 0.56886 0.39472 0.59376 0.10857 0.02358
0.7 0.1 0.09899 0.69697 0.09818 0.69260 0.01434 0.02875
0.2 0.19566 0.68816 0.19702 0.69260 0.03860 0.02541
0.3 0.28877 0.67699 0.29587 0.69260 0.07029 0.02429
0.4 0.37732 0.66348 0.39472 0.69260 0.10885 0.02374
0.8 0.1 0.09899 0.79647 0.09818 0.79145 0.01443 0.02887
0.2 0.19566 0.78636 0.19702 0.79145 0.03873 0.02553
0.3 0.28877 0.77356 0.29587 0.79145 0.07046 0.02441
0.4 0.37732 0.75810 0.39472 0.79145 0.10905 0.02386
0.9 0.1 0.09899 0.89597 0.09818 0.89030 0.01450 0.02896
0.2 0.19566 0.88456 0.19702 0.89030 0.03884 0.02562
0.3 0.28877 0.87014 0.29587 0.89030 0.07060 0.02451
0.4 0.37732 0.85272 0.39472 0.89030 0.10921 0.02395
1 0.1 0.09899 0.99547 0.09818 0.98915 0.01455 0.02904
0.2 0.19566 0.98276 0.19702 0.98915 0.03892 0.02569
0.3 0.28877 0.96672 0.29587 0.98915 0.07070 0.02458
0.4 0.37732 0.94734 0.39472 0.98915 0.10934 0.02402

better estimations than the ML procedure. Moreover the errors of both the procedures show a similar trend for the different
choices of n — u,. Further, for fixed values of n — wp, the ML error increases as 4 increases whereas the regression error
holds essentially constant, showing a negligible decrease. This is more evident in Fig. 3 in which the ML and the regression
errors are plotted as functions of 14 in the cases o = 0.04 (on the left) and o = 0.08 (on the right).

Indeed, as shown in Table 2, for the regression method, the estimations of n — u, are the same for each value of p,
whereas those for u, show a little variation. Same conclusions can be drawn from Table 3 although in it the errors are

bigger.

5.2. Example 2: application to real data

In this subsection we focus on an experimental study in breast cancer xenografts illustrated from the authors in a recent
paper (see Albano et al.,, 2011). It was observed the growth of BC297MONp5 from an experimental group of mice. The
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Table 3
Example 1. Estimated values and errors for some combinations of the parameters. o = 0.1.
True value ML estimation Regr. estimation Errors
n— iy Uq m n— i, m n— i, ML error Reg. error
0.4 0.1 0.07048 0.32835 0.07331 0.34550 0.47427 0.40306
0.2 0.10903 0.25204 0.15708 0.34550 0.82469 0.35083
0.3 0.12843 0.19928 0.24084 0.34550 1.07365 0.33342
0.4 0.13807 0.16249 0.32460 0.34550 1.24857 0.32472
0.5 0.1 0.07048 0.40812 0.07331 0.42926 0.47891 0.40828
0.2 0.10903 0.31222 0.15708 0.42926 0.83035 0.35606
0.3 0.12843 0.24610 0.24084 0.42926 1.07966 0.33865
0.4 0.13807 0.20006 0.32460 0.42926 1.25467 0.32994
0.6 0.1 0.07048 0.48789 0.07331 0.51302 0.48200 0.41176
0.2 0.10903 0.37240 0.15708 0.51302 0.83413 0.35954
0.3 0.12843 0.29292 0.24084 0.51302 1.08366 0.34213
0.4 0.13807 0.23763 0.32460 0.51302 1.25874 0.33342
0.7 0.1 0.07048 0.56765 0.07331 0.59679 0.48421 0.41425
0.2 0.10903 0.43258 0.15708 0.59679 0.83682 0.36202
0.3 0.12843 0.33974 0.24084 0.59679 1.08653 0.34462
0.4 0.13807 0.27520 0.32460 0.59679 1.26164 0.33591
0.8 0.1 0.07048 0.64742 0.07331 0.68055 0.48587 0.41612
0.2 0.10903 0.49276 0.15708 0.68055 0.83885 0.36389
0.3 0.12843 0.38656 0.24084 0.68055 1.08867 0.34648
0.4 0.13807 0.31277 0.32460 0.68055 1.26382 0.33778
0.9 0.1 0.07048 0.72719 0.07331 0.76431 0.48716 0.41757
0.2 0.10903 0.55294 0.15708 0.76431 0.84042 0.36534
0.3 0.12843 0.43337 0.24084 0.76431 1.09034 0.34793
0.4 0.13807 0.35034 0.32460 0.76431 1.26552 0.33923
1 0.1 0.07048 0.80696 0.07331 0.84808 0.48819 0.41873
0.2 0.10903 0.61312 0.15708 0.84808 0.84168 0.36650
0.3 0.12843 0.48019 0.24084 0.84808 1.09168 0.34909
0.4 0.13807 0.38792 0.3246 0.84808 1.26688 0.34039
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Fig. 3. Example 1. ML and regression errors for the cases 0 = 0.04 (a) and o = 0.08. In both cases, n — u, = 0.7.

estimations of the parameters, measured in [days] !, in the process X (t) were (see Albano et al., 2011)

o =0.112784,

o~

B = 0.0184158,

o2 = 0.010992.

As regards the process P(t), we choose n = 0.7 and u, = pq = 0.1. Further, three values for o are considered: 0.01, 0.05
and 0.1, i.e. the estimated value of o in the above mentioned study. Table 4 summarizes the results. When o = 0.01 (that
is, the trajectories have a small variability), both procedures provide good estimations, although the error in the regression-
based procedure is smallest. Nevertheless, the situation is quite different for the other values of o. Indeed, when o = 0.05
the estimations obtained from the regression method are clearly better than those ones obtained from the ML procedure
(the difference between the errors is substantial). Finally, when o = 0.1 the ML method provides an estimation of y4 that
is less than zero, that is an inadmissible value of 1.

In Fig. 4 the likelihood equation (33) is plotted as function of 4 choosing o = 0.05 (on the left) and 0 = 0.1 (on the
right). Note that the difference between the ML estimate and the real value of 14 increases as o increases.
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Table 4
Example 2. Estimated values and errors. n = 0.7, jup = pq = 0.1.
ML estimation Regr. estimation Errors
o m n— i, I 0 — 1% ML error Reg. error
0.01 0.094810 0.573896 0.103629 0.601960 0.095404 0.039556
0.05 0.035460 0.307715 0.098126 0.586658 1.132540 0.040970
0.1 —0.013472 0.127034 0.071567 0.511487 1.923000 0.431842
a b
200
. . . . g : - : —_Hq
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-200
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Fig. 4. Example 2. Likelihood equation (33) for 4 for o = 0.05 (a) and o0 = 0.1 (b).

6. Concluding remarks

In this work a two-compartment model to describe tumor dynamics is discussed. More precisely, the tumor population is
splitin a proliferating and a quiescent compartment, the first one characterized by a non-negative birth rate and the second
one characterized by a zero birth rate. The transitions between the two compartment are regulated by two positive rates,
generally depending on the whole tumor size. The estimation of involved rates in the proliferative and quiescent populations
is performed using two different procedures: the first one consisting in ML method and the second one based on the linear
regression. A simulation study and an application to real data permit to argue that the regression-based method works better
with respect the ML method.

We point out that this work opens the way to a further generalization in the estimation of the growth rates in tumor
dynamics so to better understand how a therapy protocol acts on different compartments in a tumor population. Indeed, a
therapy protocol leads to a change of the growth rates in the tumor population X(t) and consequently in the proliferating
and quiescent populations. So a procedure to estimate the involved rates permits to compare different protocols through
the analysis of experimental data obtained from in vitro studies.
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