research

Dynamic Critical approach to Self-Organized Criticality

Abstract

A dynamic scaling Ansatz for the approach to the Self-Organized Critical (SOC) regime is proposed and tested by means of extensive simulations applied to the Bak-Sneppen model (BS), which exhibits robust SOC behavior. Considering the short-time scaling behavior of the density of sites (ρ(t)\rho(t)) below the critical value, it is shown that i) starting the dynamics with configurations such that ρ(t=0)0\rho(t=0) \to 0 one observes an {\it initial increase} of the density with exponent θ=0.12(2)\theta = 0.12(2); ii) using initial configurations with ρ(t=0)1\rho(t=0) \to 1, the density decays with exponent δ=0.47(2)\delta = 0.47(2). It is also shown that he temporal autocorrelation decays with exponent Ca=0.35(2)C_a = 0.35(2). Using these, dynamically determined, critical exponents and suitable scaling relationships, all known exponents of the BS model can be obtained, e.g. the dynamical exponent z=2.10(5)z = 2.10(5), the mass dimension exponent D=2.42(5)D = 2.42(5), and the exponent of all returns of the activity τALL=0.39(2)\tau_{ALL} = 0.39(2), in excellent agreement with values already accepted and obtained within the SOC regime.Comment: Rapid Communication Physical Review E in press (4 pages, 5 figures

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019