3 research outputs found

    Lagrangian and ALE Formulations For Soil Structure Coupling with Explosive Detonation

    Get PDF
    Simulation of Soil-Structure Interaction becomes more and more the focus of computational engineering in civil and mechanical engineering, where FEM (Finite element Methods) for soil and structural mechanics and Finite Volume for CFD (Computational Fluid Dynamics) are dominant. New advanced formulations have been developed for FSI (Fluid Structure Interaction) applications using ALE (Arbitrary Lagrangian Eulerian), mesh free and SPH (Smooth Particle Hydrodynamic) methods. In defence industry, engineers have been developing protection systems for many years to reduce the vulnerability of light armoured vehicles (LAV) against mine blast using classical Lagrangian FEM methods. To improve simulations and assist in the development of these protections, experimental tests and new numerical techniques are performed. Initial conditions such as the loading prescribed by a mine on a structure should be simulated adequately in order to conduct these numerical calculations. The effects of blast on structures often depend on how the initial conditions are estimated and applied. This article uses two methods to simulate a mine blast, namely the classical Lagrangian as well as the ALE formulations. The comparison was carried out for a simple and also a more complex target. Particle methods as SPH method can also be used for soil structure interaction

    Numerical investigation of vibration and dynamic pressure of a vertical axis wind turbine

    No full text
    In the environmental field, the problems of noise reduction have become a major preoccupation, particularly on the noise generated by the acoustic radiation pressure produced by wind turbines. This paper is aimed at presenting the investigation on the application of variational indirect boundary element method for study the acoustic radiation pressure produced by vertical-axis wind turbine. For this initiative, we considered Neumann boundary condition. The formulation has two advantages: the first one is to avoid the meshing of the fluid domain; the second advantage is to treat the singular integral of the Green's function, solution of fundamental solution of the wave equation in frequency domain

    Numerical investigation of vibration and dynamic pressure of a vertical axis wind turbine

    Get PDF
    International audienceIn the environmental field, the problems of noise reduction have become a major preoccupation, particularly on the noise generated by the acoustic radiation pressure produced by wind turbines. This paper is aimed at presenting the investigation on the application of variational indirect boundary element method for study the acoustic radiation pressure produced by vertical-axis wind turbine. For this initiative, we considered Neumann boundary condition. The formulation has two advantages: the first one is to avoid the meshing of the fluid domain; the second advantage is to treat the singular integral of the Green's function, solution of fundamental solution of the wave equation in frequency domain
    corecore