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ABSTRACT 
Simulation of Soil-Structure Interaction becomes more and more the focus 

of computational engineering in civil and mechanical engineering, where 

FEM (Finite element Methods) for soil and structural mechanics and Finite 

Volume for CFD (Computational Fluid Dynamics) are dominant. New 

advanced formulations have been developed for FSI (Fluid Structure 

Interaction) applications using ALE (Arbitrary Lagrangian Eulerian), mesh free 

and SPH (Smooth Particle Hydrodynamic) methods. In defence industry, 

engineers have been developing protection systems for many years to 

reduce the vulnerability of light armoured vehicles (LAV) against mine blast 

using classical Lagrangian FEM methods. To improve simulations and assist 

in the development of these protections, experimental tests and new 

numerical techniques are performed. Initial conditions such as the loading 

prescribed by a mine on a structure should be simulated adequately in order 

to conduct these numerical calculations. The effects of blast on structures 

often depend on how the initial conditions are estimated and applied. This 

article uses two methods to simulate a mine blast, namely the classical 

Lagrangian as well as the ALE formulations. The comparison was carried out 

for a simple and also a more complex target. Particle methods as SPH 

method can also be used for soil structure interaction.  

 

 
1. INTRODUCTION  
Theoretical and experimental analysis of explosion mine loading have been considered by 
several researchers over the past decades, using empirical methods as CONWEAP 
(Conventional Weapon) code when the explosive charge is far away from the structure, and 
Lagrangian description of motion for near field.  

Different approaches have been explored in recent years to simulate the loading 
conditions generated by mine blast. This article briefly describes these approaches that 
include the following models: 
1. The CONWEP model 
2. The Westine model 
3. The pressure-based mine loading model 
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4. The CHINOOK  method 
5. The arbitrary Lagrangian-Eulerian (ALE) method 
6. The smoothed particle hydrodynamics (SPH) method. 

Each above techniques has limitations and therefore empirical and simplified methods 
using CONWEP, Westine, pressure-based mine loading models are based on analytical 
pressure validated for target, defense industry continues to investigate and develop additional 
features to predict mine blast and also to model the interaction of blast on complex structures. 

The aim of this article is to compare numerical results obtained using the two different 
formulations, the ALE and SPH with empirical and simplified methods using CONWEP, 
Westine, pressure-based mine loading models. with methods experimental data. The 
comparison was carried out for two scenarios and the obtained numerical results were 
compared with the experimental data. The first scenario, which represents a typical buried 
mine blast, had an aluminum plate placed on four steel legs and centred over a surrogate mine 
filled with explosive type C4. The experimental setup, the FE models and the results are all 
given in Section 2. For this more complex scenario, several parametric studies were carried 
out for the ALE and SPH methods. For the ALE model, mesh sensitivity analysis of soil and 
explosive were investigated. A moving and a fixed air domain has been compared and the 
effect of the explosive geometry has also been studied. The effect of the properties of air 
material and equation of state were also studied. A mesh sensitivity analysis was conducted 
for the ALE  model, and the results obtained with several formulations of the particle 
approximation theory were compared. In this article, devoted to ALE and Lagrangian 
formulations for soil structure interaction problems, the numerical and mathematical 
implementation of the ALE and SPH formulations are described. To validate the statement,, 
we perform a simulation of  a shock wave propagation generated by explosive detonation. In 
Section 2, the governing equations  of the ALE formulation are described. In this section, we 
discuss the advection algorithms used to solve mass, momentum and energy conservation in 
the multi-material formulation. Section 3 describes the SPH formulation, which can also been 
used for these applications, unlike ALE formulation which based of the Galerkin approach, 
SPH is a collocation method.  The first target is an aluminum plate centred over a surrogate 
mine filled with C4 explosive which represents a typical buried mine blast scenario. The final 
deformation of the plate was measured for both approaches and was compared with 
experimental measurements. Parametric studies were conducted on both models and the best 
obtained results were compared to the experimental ones. Each comparison include the 
velocity at the center of the plate, sponson top and sponson sidewall. 

 
2. ALE MULTI-MATERIAL FORMULATION  
A brief description of the ALE formulation used in this paper is presented, additional details 
can be provided in Aquelet et al. (2005). To solve soil structure interaction problems, a 
Lagrangian formulation is performed for the structure and an ALE formulation for the soil 
and explosive materials, where soil and explosive materials can be mixed in the same 
element; this element is referred as mixed element, since it contains two different materials 
soil and explosive as described in Fig. 1. A mixture theory is used to partition the material 
inside the element and compute the volume weighted stress from the constitutive model of 
each material as described in Souli et al. (souli ,erchqui 2012). 

In the ALE description, in addition to the Lagrangian and Eulerian coordinates an arbitrary 
referential coordinate is introduced. The material derivative with respect to the reference  
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coordinate may be expressed in equation 1. Thus substituting the relationship between the 
reference configuration time derivative and material time derivative leads to the ALE 
equations, 
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where iX  is the Lagrangian coordinate, ix the Eulerian coordinate, iw  is the relative 
velocity. The velocity of the material is v and the velocity of the mesh is u. In order to 
simplify the equations the relative velocity is introduced by w v u= − . Thus, the governing 
equations for the ALE formulation are given by the following conservation equations: 
 

 
Figure 1: Lagrangian and Advection phases in one step 

 
(i) Mass equation. 
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(ii) Momentum equation.  
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ijσ  is the stress tensor defined by .P Idσ τ= − + , whereτ is the shear stress from the 

constitutive model, and P the pressure. For explosive gas the pressure is computed through 
an equation of state defined in chapter.  

For the structure, a classical elasto-plastic material model is used, where the shear 
strength is much higher than the volumetric strain. 

 
(iii) Energy equation. 
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Note that the Eulerian equations commonly used in fluid mechanics are derived by 

assuming that the velocity of the reference configuration is zero, 0u =  and that the relative 
velocity between the material and the reference configuration is the material velocity, w v=
. The term in the relative velocity in Eq. 2.3 and Eq. 2.4 is usually referred to the advective 
term, and accounts for the transport of the material past the mesh. An additional term, in the 
equations, makes solving the ALE equations much more difficult numerically than the 
Lagrangian equations, where the relative velocity is zero. 

There are two methods to implement the ALE equations, which correspond to the two 
approaches taken in implementing the Eulerian viewpoint in fluid mechanics. The first method 
is to solve the fully coupled equations for computational fluid mechanics; this approach, used 
by different authors, can only deal with a single material in an element as described in an 
example given by Ozdemir, Souli and Fahjan (2010). The alternative method is referred to an 
operator split in the literature, where the calculation for each time step is divided into two 
phases. First, a Lagrangian phase is carried out, in which the mesh moves with the material, 
in this phase the changes in velocity and internal energy due to the internal and external forces, 
are calculated. The equilibrium equations are: 
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In the Lagrangian phase, mass is automatically conserved, since no material flows across 
element boundaries.  

In the second phase, the advection phase, transport of mass, energy and momentum across 
element boundaries are computed; this may be thought of as remapping the displaced mesh at 
the Lagrangian phase back to its original for Eulerian formulation or arbitrary position for 
ALE formulation using smoothing algorithms. From a discretization point of view of Eq. 2.5 
and Eq. 2.6, one point integration is used for efficiency and to eliminate locking as it is 
mentioned by Benson (1992). The zero energy modes are controlled with an hourglass 
viscosity, see Hallquist (1998). A shock viscosity with linear and quadratic terms derived by 
Von Neumann and Richtmeyer (1950), is used to resolve the shock wave. The resolution is 
advanced in time with the central difference method, which provides a second order accuracy 
for time integration. 

For each node, the velocity and displacement are updated as follows: 
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Where intF  is the internal vector force and extF  the external vector force associated with 
body forces, coupling forces, and pressure boundary conditions, M is a diagonal lumped 
mass matrix. For each element of the mesh, the internal force is computed as follows: 
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where B is the gradient matrix and Nelem is the number of elements. The time step size t∆ , 
is limited by the Courant stability condition (see Benson (1992)), which may be expressed 
as:   

c
lt ≤∆  (9) 

where l is the characteristic length of the element, and c the speed of sound through the 
material in the element. For a solid material, the speed of sound is defined as: 

ρ
Kc =  (10) 

where ρ  is the material density, K is the module of compressibility.  
 
3. SPH FORMULATION  
3.1. SPH Formulation 
The SPH method developed originally for solving astrophysics problem has been extended 
to solid mechanics by Libersky et al. (1993) to model problems involving large deformation 
including high velocity impact. SPH method provides many advantages in modeling severe 
deformation as compared to classical FEM formulation which suffers from high mesh 
distortion. The method was first introduced by Lucy (1977) and Gingold and Monaghan 
(1977) for gas dynamic problems and for problems where the main concern is a set of  
discrete physical particles than the continuum media. The method was extended to solve 
high velocity impact in solid mechanics, CFD applications governed by Navier-Stokes 
equations and fluid structure interaction problems. 

It is well known that SPH method suffers from lack of consistency that can lead to poor 
accuracy of motion approximation. Unlike Finite Element, interpolation in SPH method 
cannot reproduce constant and linear functions. 
 

 
Figure 2: FEM model, mesh and nodes (left) and SPH model, particles (right) 
 

A detailed overview of the SPH method is developed by Liu M.B. and Liu G.R.(2010), 
where the two steps for representing of function f, an integral interpolation and a kernel 
approximation are given by: 

dyyxyuxu ii )().()( −= ∫ δ  (11) 
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where the Dirac function satisfies: 
1)( =− yxiδ ,  if  yxi =  

0)( =− yxiδ ,  if  yxi ≠  
(12) 

The approximation of the integral function Eq. 11 is based on the kernel approximation W, 
that approximates the Dirac function based on the smoothing length h.  
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that represents support domain of the kernel function, see Fig. 3. 
 

 
Figure 3: Kernel Function and its support domain for a 2D function 
 

So that Eq 11 becomes, 

( )dyhyxWyuxu i ,).()( −>=< ∫  (14) 

Taking in consideration de support domain of the kernel function, the SPH approximation 
of a particle 𝑥𝑥𝑖𝑖 is obtained discretizing the integral into a sum over the particles that are within 
the kernel support domain as it is shown in Fig. 3.  

( )hxxWux jiDj jjisph iu ,..)( −= ∑ ∈
ω  (15) 

where the weight 𝜔𝜔𝑗𝑗 =
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
 is the volume of the particle. 

Integrating by part Eq. 14 and considering the properties of the SPH interpolation and that 
( ) ( ) ( ). 1 1.u u u∇ = ∇ − ∇ , the SPH approximation for the gradient operator of a function is 

given by, 
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Considering that ∇(𝑃𝑃)
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∇(𝜌𝜌) + ∇ �𝑃𝑃

𝜌𝜌
�, applying the SPH interpolation on Navier-Stokes 

equations, one can derive a symmetric SPH formulation for Navier-Stokes equations such that 
the principle of action and reaction is respected and that the accuracy is improved. Finally, we 
have the following discretized set of equations: 
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(i) Mass equation. 
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(ii) Momentum equation.  
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(iii) Energy equation. 
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For constant and linear function, The standard SPH interpolation is not exact: 
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It is well know from previous studies (see Villa (1999, 2005)), that Eq. 20 and Eq. 21 are 
exact only if the condition ∆𝑥𝑥

ℎ  
→  0 is fulfilled  

 
4. BLAST AND EXPLOSIVE MODELS  
4.1. Constitutive models and equation of states for explosive and water 
In High explosive process, a rapid chemical reaction is involved, which converts the 
material into high-pressure gas. From a constitutive material point of view, the gas is 
assumed inviscid with zero shear, and the pressure is computed through JWL equation of 
state (Jones-Wilkins-Lee), a specific equation of state, commonly used for explosive 
material. There have been many equations of state proposed for gaseous products of 
detonation, from simple theoretically to empirically based equations of state with many 
adjustable parameters.  

The explosive was modeled with 8-nodes elements. The equation of state determines the 
relation between blast pressure, change of volume and internal energy. The JWL equation 
of state was used in the following form:  
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In Equation (5.1) p is the pressure, V is the relative volume: 

0v
vV=  (23) 

where v and vo are the current and initial element volume respectively, while A, B, C, R1, R2 
and ω are material constants defined in table 1. These performance properties are based on 
the cylinder expansion test in controlled conditions. 
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Table 1: Parameters used for C-4 explosive 
A (Mbar) 5.409 
B (Mbar) 0.0937 
R1 4.50 
R2 1.10 
E0 (Mbar– cm3/ cm3 ) 0.043 
ω 0.35 
Vd (cm / µs) 0.753 
ρ (g / cm3) 1.700 
ρCJ (Mbar) 0.255 

 
At the beginning of the computations V=1.0. E is the initial energy per unit volume.  
The first term of JWL equation, known as high-pressure term, dominates first for V close 

to one. The second term is influential in the JWL pressure for V close to two. Observe that in 
the expanded state, the relative volume is sufficiently important so that the exponential terms 
vanish, and JWL equation of state takes the form of an ideal gas equation of state: 

 
4.2. Constitutive material model for soil 
Geo-mechanic materials like soil and rocks behave very differently from classical elastic 
plastic which are ductile materials. When soil is compressed uniformly, it can withstand 
important loads, but during shear loading or tension, the material gets quickly into rupture. 
Unlike ductile materials soil acts as a brittle material and  show little or no plastic 
deformation before fracture. Material characteristic is a critical element of numerical 
analysis. It can greatly influence the outcome of a numerical prediction. Many constitutive 
models are available to simulate soil behavior. In this paper we use a model due to which 
provides a simple model for soil. This model has been extensively used and validated by 
NASA Langley Research, where fundamental testing  research for  soils characterization 
has been performed. Soil material and many geo-materials can vary from the hard clay to 
the soft dry sand, and they are highly compressible. Because the material strength is pressure 
dependent, a volume pressure curve is necessary for constitutive modeling.  

These materials typically fail in shear, where the shear failure surface is pressure 
dependent. When the shear failure surface is exceeded, the deviatoric stresses are limited by 
the failure surface and the material can then flow like a viscous fluid. If the shear strength of 
a material is very low as for dry sand, the model gives fluid-like behavior. Testing to determine 
the shear failure envelope, which depends on the confining pressure, is generally 
accomplished in the laboratory using a tri-axial compression test. The tri-axial test apparatus 
can be used for strength testing of soils, compressibility testing, and can be used to determine 
bulk unloading modulus by a hydrostatic compression test where the soil is loaded using a 
uniform pressure at the surface. In soil the shear failure surface is pressure dependent, which 
is a basic property of geo-materials. The pressure dependent shear surface is written in terms 
of  pressure in the following form: 
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where 𝐽𝐽2 = 1

2
𝑆𝑆𝑖𝑖𝑖𝑖 . 𝑆𝑆𝑖𝑖𝑖𝑖  is the second deviatoric  invariant, p the mean pressure, and 𝑆𝑆𝑖𝑖𝑖𝑖  is the 

deviatoric stress tensor. The coefficients 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2 are determined from tri-axial 
compression tests. The material parameters for the soil material used in this paper are 
defined in the following table: 
 
Table 2: Parameters used for Soil Material 
Density (g/cm3) 1.874 
Shear Modulus (Mbar) 0.00358 
Bulk unloading (Mbar) 0.0050 
a0 (Mbar) 0. 
a1 0. 
a2 (Mbar)-1 0.30 
Pressure Cutoff (Mbar) -5.e-5 
 

In table 1, the elastic shear modulus describes shear deformation when the soil is initially 
loaded. The bulk unloading modulus describes the expansion of the soil when the load is 
reduced. These two parameters are necessary because the loading and unloading behavior 
of soil is not equal due to permanent deformations. 

Volumetric strain behavior is defined by the natural log of the relative volume and is 
negative in compression. Relative volume is the ratio of the current soil cell volume to the 
initial volume at the start of the calculation. The volumetric strain is represented as a 10-
point curve in pressure versus volume strain space. Each point on the curve is obtained from 
material testing at the given pressure. Figure 2 presents the scheme of the pressure–
volumetric strain relationship. Starting from an initial volume (V=V0), the medium first 
undergoes elastic compression. An increase in pressure beyond the elastic part leads to 
plastic compression until full compaction is reached. An increase in pressure beyond leads 
to non-linear elastic compaction. Unloading process occurs according to an elastic law with 
the bulk unloading given in table 1. 

The soil material used in this paper is a typical one used for most applications where  
material properties are defined in Table 2 For the structure, a classical elasto-plastic 
constitutive material law is used, where material properties are given in the following table: 

 
4.2. Constitutive material for the plate 
A plastic kinematic material model was used to model the plate and the frame, and the 
corresponding material properties are given in Table 3.  
 
Table 3: Parameters used for Structure 
Density, g/cm3 7.800 
Elastic modulus, (E) MPa 2.10 
Poisson’s ratio, 0.30 
Yield stress, MPa 0.008 
Tangent modulus, (E) MPa 0.000 
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Figure 2: Pressure volumetric strain curve 

 
5. COMPARISON BETWEEN ALE AND LAGRANGIAN METHODS 
The problem setup is described in figure 4, where high explosive, soil and structure are 
meshed using 8 nodes hexahedra. The classical Lagrangian method can be used for more 
applications where the mesh is not highly distorted. As we can see in figure 5 after 220 
microseconds, we observe high distortion in the soil mesh. If we carry the computation 
further in time, the soil will undergo higher mesh distortion which can lead to element 
negative volume and termination before physical termination time, this effect can be 
observed in figure 6 and 7 where pressure is plotted for both formulation. This situation 
does not appear in the ALE formulation, since a re-meshing procedure of the soil material 
is applied at each time step or after few cycles. The re-meshing procedure is described in 
detail Aquelet et al. (2005) 

To show the robustness of the ALE method, we run the same problem using ALE and 
Lagrangian formulations, where the Lagrangian method is stopped a soon as the soil material  
 

 
Figure 4: Problem Setup: Explosive, Soil and Structure 
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starts having high mesh distortion. Fig. 8 shows good correlation for structure displacement, 
between the Lagrangian and ALE approaches. 

In this work, we have presented the application of Lagrangian and ALE approaches for 
simulating blast wave propagation in water. Comparisons with experimental results from  
 

 
Figure 5: ALE and Lagrangian Volume fraction at t=220 
 

 
Figure 6: ALE and Lagrangian Pressure at t=220 microseconds 
 

 
Figure 6: ALE and Lagrangian volume fraction at t= 520 microseconds 
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literature and CONWEP predictions were made in order to validate the numerical model. 
Several parametric studies were conducted. 
 

 
Figure 8: ALE and Lagrangian structure displacement 
 
4. CONCLUSIONS 
In this paper, we present ALE and Lagrangian methods as well as their limitations for 
specific problems. Underwater explosion is commonly solved using ALE formulation, in 
defence industry; some of these problems are solved using SPH method. For the last decade, 
SPH methods are gaining in accuracy numerical stability, and the use of SPH method is 
becoming more common in industry for solving soil structure coupling problems. For 
instance, in aerospace, where bird impacts on aircraft are very common and cause 
significant safety threats to commercial and military aircraft. According to FAA (Federal 
American Aviation) regulations, aircraft should be able to land safely Souli et al (2012). 
For decades engineers in aerospace industry were using ALE method to simulate bird 
impact on aircrafts, where a viscous hydrodynamic material is used for the bird. These 
applications require a large ALE domain for the coupling between the bird material and the 
surrounding structure, mainly when the bird is spread all over the space.  According to 
technical reports from engineers in aerospace, ALE formulation is more CPU time 
consuming  and requires more memory allocation that SPH method. In this paper, first, we 
describe both ALE and Lagrangian methods, and we compare numerical results between 
the two methods using similar mesh size. Using a simple soil structure interaction problem, 
it has been observed that using same mesh size for both methods, numerical results, 
displacement, velocity and Von Mises stress on the structure, are under estimated with SPH 
method.  When refining the SPH particles, where each ALE element is replaced by 4 SPH 
particles in two dimensional and 8 particles in three dimensions, numerical results form 
SPH method are in good correlation with those from ALE simulation; in terms of 
displacement, velocity and Von Mises stress on the structure. Since the ultimate objective 
is the design of structure resisting to load blast, numerical simulations from ALE and SPH 
methods can be included in shape design optimization with shape optimal design 
techniques, see Souli et al (1993), and material optimisation, see Erchiqui et al (2007). Once 
simulations are validated by test results, they can be used as design tool for the improvement 
of the system structure being involved. Once simulations are validated by test results, it can 
be used as design tool for the improvement of the system structure involved. 
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