925 research outputs found
Global HI profiles of spiral galaxies
In this paper we present short HI synthesis observations of 57 galaxies
without HI information in the RC3. These are a by-product of a large survey
with the WSRT of the neutral hydrogen gas in spiral and irregular galaxies.
Global profiles and related quantities are given for the 42 detected galaxies
and upper limits for the remaining 15. A number of galaxies have low values of
HI mass-to-blue luminosity ratio.Comment: A LATEX file without figures. The postscript version including all
the figures can be retrieved from http://www.astro.rug.nl:80/~secr/ Accepted
for publication in Astronomy & Astrophysics Suppl. Serie
The switching dynamics of the bacterial flagellar motor
Many swimming bacteria are propelled by flagellar motors that stochastically
switch between the clockwise and counterclockwise rotation direction. While the
switching dynamics are one of the most important characteristics of flagellar
motors, the mechanisms that control switching are poorly understood. We present
a statistical-mechanical model of the flagellar rotary motor, which consists of
a number of stator proteins that drive the rotation of a ring of rotor
proteins, which in turn drives the rotation of a flagellar filament. At the
heart of our model is the assumption that the rotor protein complex can exist
in two conformational states corresponding to the two respective rotation
directions, and that switching between these states depends on interactions
with the stator proteins. This naturally couples the switching dynamics to the
rotation dynamics, making the switch sensitive to torque and speed. Another key
element of our model is that after a switching event, it takes time for the
load to build up, due to polymorphic transitions of the filament. Our model
predicts that this slow relaxation dynamics of the filament, in combination
with the load dependence of the switching frequency, leads to a characteristic
switching time, in agreement with recent observations.Comment: 7 pages, 6 figures, RevTeX
Fundamental activity constraints lead to specific interpretations of the connectome
The continuous integration of experimental data into coherent models of the
brain is an increasing challenge of modern neuroscience. Such models provide a
bridge between structure and activity, and identify the mechanisms giving rise
to experimental observations. Nevertheless, structurally realistic network
models of spiking neurons are necessarily underconstrained even if experimental
data on brain connectivity are incorporated to the best of our knowledge.
Guided by physiological observations, any model must therefore explore the
parameter ranges within the uncertainty of the data. Based on simulation
results alone, however, the mechanisms underlying stable and physiologically
realistic activity often remain obscure. We here employ a mean-field reduction
of the dynamics, which allows us to include activity constraints into the
process of model construction. We shape the phase space of a multi-scale
network model of the vision-related areas of macaque cortex by systematically
refining its connectivity. Fundamental constraints on the activity, i.e.,
prohibiting quiescence and requiring global stability, prove sufficient to
obtain realistic layer- and area-specific activity. Only small adaptations of
the structure are required, showing that the network operates close to an
instability. The procedure identifies components of the network critical to its
collective dynamics and creates hypotheses for structural data and future
experiments. The method can be applied to networks involving any neuron model
with a known gain function.Comment: J. Schuecker and M. Schmidt contributed equally to this wor
Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies
We show that the observed upper bound on the line-of-sight velocity
dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a
simple dynamical origin within the LCDM cosmological model, under two main
hypotheses. The first is that most of the stars now in the luminous parts of a
giant elliptical formed at redshift z>6. Subsequently, the stars behaved
dynamically just as an additional component of the dark matter. The second
hypothesis is that the mass distribution characteristic of a newly formed dark
matter halo forgets such details of the initial conditions as the stellar
"collisionless matter" that was added to the dense parts of earlier generations
of halos. We also assume that the stellar velocity dispersion does not evolve
much at z<6, because a massive host halo grows mainly by the addition of
material at large radii well away from the stellar core of the galaxy. These
assumptions lead to a predicted number density of ellipticals as a function of
stellar velocity dispersion that is in promising agreement with the Sloan
Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio
A High-Resolution Rotation Curve of NGC 6822: A Test-case for Cold Dark Matter
We present high resolution rotation curves of the local group dwarf irregular
galaxy NGC 6822 obtained with the Australia Telescope Compact Array. Our best
curves have an angular resolution of 8'' or 20 pc and contain some 250
independent points. The stellar and gas components of NGC 6822 cannot explain
the shape of the curve, except for the very inner regions, and NGC 6822 is
consequently very dark matter dominated. There is no evidence for the presence
of a steep density cusp down to scales of ~20 pc, contrary to the predictions
of Cold Dark Matter.Comment: Accepted for publication in MNRA
The Westerbork HI Survey of Spiral and Irregular Galaxies I. HI Imaging of Late-type Dwarf Galaxies
Neutral hydrogen observations with the Westerbork Synthesis Radio Telescope
are presented for a sample of 73 late-type dwarf galaxies. These observations
are part of the WHISP project (Westerbork HI Survey of Spiral and Irregular
Galaxies). Here we present HI maps, velocity fields, global profiles and radial
surface density profiles of HI, as well as HI masses, HI radii and line widths.
For the late-type galaxies in our sample, we find that the ratio of HI extent
to optical diameter, defined as 6.4 disk scale lengths, is on average 1.8+-0.8,
similar to that seen in spiral galaxies. Most of the dwarf galaxies in this
sample are rich in HI, with a typical M_HI/L_B of 1.5. The relative HI content
M_HI/L_R increases towards fainter absolute magnitudes and towards fainter
surface brightnesses. Dwarf galaxies with lower average HI column densities
also have lower average optical surface brightnesses. We find that lopsidedness
is as common among dwarf galaxies as it is in spiral galaxies. About half of
the dwarf galaxies in our sample have asymmetric global profiles, a third has a
lopsided HI distribution, and about half shows signs of kinematic lopsidedness.Comment: Accepted for publication in A&A. 18 pages. 39 MB version with all
figures is available http://www.robswork.net/publications/WHISPI.ps.g
The scale-free character of the cluster mass function and the universality of the stellar IMF
Our recent determination of a Salpeter slope for the IMF in the field of 30
Doradus (Selman and Melnick 2005) appears to be in conflict with simple
probabilistic counting arguments advanced in the past to support observational
claims of a steeper IMF in the LMC field. In this paper we re-examine these
arguments and show by explicit construction that, contrary to these claims, the
field IMF is expected to be exactly the same as the stellar IMF of the clusters
out of which the field was presumably formed. We show that the current data on
the mass distribution of clusters themselves is in excellent agreement with our
model, and is consistent with a single spectrum {\it by number of stars} of the
type with beta between -1.8 and -2.2 down to the smallest clusters
without any preferred mass scale for cluster formation. We also use the random
sampling model to estimate the statistics of the maximal mass star in clusters,
and confirm the discrepancy with observations found by Weidner and Kroupa
(2006). We argue that rather than signaling the violation of the random
sampling model these observations reflect the gravitationally unstable nature
of systems with one very large mass star. We stress the importance of the
random sampling model as a \emph{null hypothesis} whose violation would signal
the presence of interesting physics.Comment: 9 pages emulateap
Substructure and halo density profiles in a Warm Dark Matter Cosmology
We performed a series of high-resolution simulations designed to study the
substructure of Milky Way-size galactic halos (host halos) and the density
profiles of halos in a warm dark matter (WDM) scenario with a non-vanishing
cosmological constant. The virial masses of the host halos range from 3.5 x
10^12 to 1.7 x 10^12 solar masses and they have more than 10^5 particles each.
A key feature of the WDM power spectrum is the free-streaming length R_f which
fixes an additional parameter for the model of structure formation. We analyze
the substructure of host halos using three R_f values: 0.2, 0.1, and 0.05 Mpc
and compare results to the predictions of the cold dark matter (CDM) model. We
find that guest halos (satellites) do form in the WDM scenario but are more
easily destroyed by dynamical friction and tidal disruption than their
counterparts in a CDM model. The small number of guest halos that we find
within the virial radii of host halos at z = 0 in the WDM models is the result
of a less efficient halo accretion and a higher satellite destruction rate.
Under the assumption that each guest halo hosts a luminous galaxy, we find that
the observed circular velocity function of satellites around the Milky Way and
Andromeda is well described by the R_f = 0.1 Mpc WDM model. In the R_f =
0.1-0.2 Mpc models, the surviving subhalos at z=0 have an average concentration
parameter c_1/5 which is approximately twice smaller than that of the
corresponding CDM subhalos. This difference, very likely, produces the higher
satellite destruction rate found in the WDM models. The density profile of host
halos is well described by the NFW fit whereas guest halos show a wide variety
of density profiles (abridged).Comment: Uses emulateapj.sty: 10 pages, 4 figures, ApJ accepted. Some changes
have been introduced as suggested by the referee: (1) the description of the
numerical simulations was sligthly modified to make it clearer, (2) the
ellipticities of the host halos are now measured, and (3) the discussion
section was divided in two subsections and enlarge
Chandra Observations and the Nature of the Anomalous Arms of NGC 4258 (M 106)
This paper presents high resolution X-ray observations with Chandra of NGC
4258 and infers the nature of the so called ``anomalous arms'' in this galaxy.
The anomalous arms dominate the X-ray image; diffuse X-ray emission from the
``plateaux'' regions, seen in radio and H imaging, is also found. X-ray
spectra have been obtained at various locations along the anomalous arms and
are well described by thermal (mekal) models with kT in the range 0.37 - 0.6
keV. The previously known kpc-scale radio jets are surrounded by cocoons of hot
X-ray emitting gas for the first 350 pc of their length. The radio jets, seen
in previous VLBA and VLA observations, propagate perpendicular to the compact
nuclear gas disk (imaged in water vapor maser emission). The angle between the
jets and the rotation axis of the galactic disk is 60. The jets shock
the normal interstellar gas along the first 350 pc of their length, causing the
hot, X-ray emitting cocoons noted above. At a height of z = 175 pc from the
disk plane, the jets exit the normal gas disk and then propagate though the low
density halo until they reach ``hot spots'' (at 870 pc and 1.7 kpc from the
nucleus), which are seen in radio, optical line and X-ray emission. These jets
must drive mass motions into the low density halo gas. This high velocity halo
gas impacts on the dense galactic gas disk and shock heats it along and around
a ``line of damage'', which is the projection of the jets onto the galactic gas
disk as viewed down the galaxy disk rotation axis. However, because NGC 4258 is
highly inclined ( = 64), the ``line of damage'' projects on the
sky in a different direction to the jets themselves. We calculate the expected
p.a. of the ``line of damage'' on the sky and find that it coincides with the
anomalous arms to within 2. (Abstract truncated).Comment: 12 pages plus 9 figures, to be published in the Astrophysical
Journal, v560, nr 1, pt 1 (Oct 10, 2001 issue
- …