8 research outputs found

    Estrogen Receptor Alpha Promotes Protein Synthesis by Fine-Tuning the Expression of the Eukaryotic Translation Initiation Factor 3 Subunit F (eIF3f)

    No full text
    Approximately two thirds of all breast cancer cases are estrogen receptor (ER)-positive. The treatment of this breast cancer subtype with endocrine therapies is effective in the adjuvant and recurrent settings. However, their effectiveness is compromised by the emergence of intrinsic or acquired resistance. Thus, identification of new molecular targets can significantly contribute to the development of novel therapeutic strategies. In recent years, many studies have implicated aberrant levels of translation initiation factors in cancer etiology and provided evidence that identifies these factors as promising therapeutic targets. Accordingly, we observed reduced levels of the eIF3 subunit eIF3f in ER-positive breast cancer cells compared with ER-negative cells, and determined that low eIF3f levels are required for proper proliferation and survival of ER-positive MCF7 cells. The expression of eIF3f is tightly controlled by ERalpha at the transcriptional (genomic pathway) and translational (nongenomic pathway) level. Specifically, estrogen-bound ERalpha represses transcription of the EIF3F gene, while promoting eIF3f mRNA translation. To regulate translation, estrogen activates the mTORC1 pathway, which enhances the binding of eIF3 to the eIF4F complex and, consequently, the assembly of the 48S preinitiation complexes and protein synthesis. We observed preferential translation of mRNAs with highly structured 5\u27-UTRs that usually encode factors involved in cell proliferation and survival (e.g. cyclin D1 and survivin). Our results underscore the importance of estrogen-ERalpha-mediated control of eIF3f expression for the proliferation and survival of ER-positive breast cancer cells. These findings may provide rationale for the development of new therapies to treat ER-positive breast cancer

    Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer

    No full text
    Deregulated PI3K/mTOR signals can promote the growth of breast cancer and contribute to endocrine treatment resistance. This report aims to investigate raptor and its intracellular localization to further understand its role in ER-positive breast cancer. Raptor protein expression was evaluated by immunohistochemistry in 756 primary breast tumors from postmenopausal patients randomized to tamoxifen or no tamoxifen. In vitro, the MCF7 breast cancer cell line and tamoxifen-resistant MCF7 cells were studied to track the raptor signaling changes upon resistance, and raptor localization in ER alpha-positive cell lines was compared with that in ER alpha-negative cell lines. Raptor protein expression in the nucleus was high in ER/PgR-positive and HER2-negative tumors with low grade, features associated with the luminal A subtype. Presence of raptor in the nucleus was connected with ER alpha signaling, here shown by a coupled increase of ER alpha phosphorylation at S167 and S305 with accumulation of nuclear raptor. In addition, the expression of ER alpha-activated gene products correlated with nuclear raptor. Similarly, in vitro we observed raptor in the nucleus of ER alpha-positive, but not of ER-negative cells. Interestingly, raptor localized to the nucleus could still be seen in tamoxifen-resistant MCF7 cells. The clinical benefit from tamoxifen was inversely associated with an increase of nuclear raptor. High cytoplasmic raptor expression indicated worse prognosis on long-term follow-up. We present a connection between raptor localization to the nucleus and ER alpha-positive breast cancer, suggesting raptor as a player in stimulating the growth of the luminal A subtype and a possible target along with endocrine treatment.Funding Agencies|Swedish Cancer Society; Region of Ostergotland; Cancer Society in Stockholm; King Gustav V Jubilee Clinical Research Foundation; National Cancer Institute (NCI); American Cancer Society; Atol Charitable Trust</p

    Effects of Combining Rapamycin and Resveratrol on Apoptosis and Growth of TSC2-Deficient Xenograft Tumors

    No full text
    Lymphangioleiomyomatosis (LAM) is a rare neoplastic metastatic disease affecting women of childbearing age. LAM is caused by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) as a consequence of tuberous sclerosis complex (TSC) 1/2 inactivation. Clinically, LAM results in cystic lung destruction. mTORC1 inhibition using rapamycin analogs (rapalogs) is partially effective in reducing disease progression and improving lung function. However, cessation of treatment results in continued progression of the disease. In the present study, we investigated the effectiveness of the combination of rapamycin treatment with resveratrol, an autophagy inhibitor, in the TSC2-null xenograft tumor model. We determined that this combination inhibits phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/Akt/mTORC1 signaling and activates apoptosis. Therefore, the combination of rapamycin and resveratrol may be an effective clinical strategy for treatment of LAM and other diseases with mTORC1 hyperactivation

    Phosphoproteomics Reveals Resveratrol-Dependent Inhibition of Akt/mTORC1/S6K1 Signaling

    No full text
    Resveratrol, a plant-derived polyphenol, regulates many cellular processes, including cell proliferation, aging and autophagy. However, the molecular mechanisms of resveratrol action in cells are not completely understood. Intriguingly, resveratrol treatment of cells growing in nutrient-rich conditions induces autophagy, while acute resveratrol treatment of cells in a serum-deprived state inhibits autophagy. In this study, we performed a phosphoproteomic analysis after applying resveratrol to serum-starved cells with the goal of identifying the acute signaling events initiated by resveratrol in a serum-deprived state. We determined that resveratrol in serum-starved conditions reduces the phosphorylation of several proteins belonging to the mTORC1 signaling pathway, most significantly, PRAS40 at T246 and S183. Under these same conditions, we also found that resveratrol altered the phosphorylation of several proteins involved in various biological processes, most notably transcriptional modulators, represented by p53, FOXA1, and AATF. Together these data provide a more comprehensive view of both the spectrum of phosphoproteins upon which resveratrol acts as well as the potential mechanisms by which it inhibits autophagy in serum-deprived cells
    corecore