16 research outputs found

    Structure-Function of Serotonin in Bivalve Molluscs

    Get PDF
    It has been observed that 5-HT excites the heart nerves in hard clam and regulates contraction and relaxation of the anterior byssus retractor muscle in the blue mussel. It is now known that 5-HT regulates several neurobehavioral systems such as mood, appetite, sleep, learning, and memory. It also plays critical roles in the physiological functions of peripheral organs involved in stress, growth, and reproduction in the animal kingdom. The present study reviews conserved 5-HT biosynthesis and its localization in the nervous system, and its physiological contribution to regulate reproduction in bivalves. In the cytosol of neurons, tryptophan hydroxylase catalyzes hydroxylation of l-tryptophan to 5-hydroxytryptophan, which is converted to 5-HT by aromatic l-amino acid decarboxylase. A 5-HT transporter and a monoamine oxidase reuptakes and metabolizes 5-HT to control the amount of released 5-HT in the nervous system and peripheral organs. Perikarya and fibers of 5-HT neurons are mostly located in the cortices and neuropil of ganglia, respectively, and innervate the gonad. However, distribution and 5-HT content differ among species and sexes and undergo seasonal variations associated with gonadal development. The present review pays a special attention to future research perspectives to better understand 5-HT regulation of reproduction in bivalves

    Pharmacology and Molecular Identity of Serotonin Receptor in Bivalve Mollusks

    Get PDF
    It is now known that 5-HT regulates several neurobehavioral systems such as mood, appetite, sleep, learning, and memory. It also plays critical roles in the physiological functions of peripheral organs involved in stress, growth, and reproduction in the animal kingdom. 5-HT content has seen to be higher in the nervous system of bivalves than those of other examined invertebrates and vertebrates. Thus, bivalves have been considered as an excellent model to investigate 5-HT functions in neurological and peripheral systems. The present study reviews knowledge on 5-HT signaling mediated through 5-HT receptor and its physiological contribution to regulate reproduction in bivalves. Two G-protein-coupled 5-HT1-like receptors have been cloned in bivalve species. However, binding affinities of the 5-HT agonists and antagonists to the isolated plasma membrane proteins and their effects on spawning in bivalves suggest the presence of a single or mixed 5-HT1-, 5-HT2-, and 5-HT3-like receptors. It has suggested that the 5-HT-like receptors in bivalves are distinct from those of mammalian 5-HT receptors due to pharmacological properties. The present review pays a special attention to future research perspectives to better understand 5-HT regulation of reproduction in bivalves, which can provide us with satisfactory knowledge to elucidate reproductive disorders associated with dysfunctions of the neurotransmitter system

    Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus

    Get PDF
    a b s t r a c t a r t i c l e i n f o Reproductive potential of fish stocks is critically dependent on sperm performance in an aquatic environment. The aim of this study is to test hypotheses, which govern the initiation of sperm motility and swimming performance, through physiological functions of osmolality and Ca 2+ ion, in a threatened species of freshwater fish, the redside dace, Clinostomus elongatus. Spermatozoa motility was activated in either ionic or non-ionic media spanning a range of osmolalities

    Spermatozoa motility in bivalves: Signaling, flagellar beating behavior, and energetics

    No full text
    WOS:000476579700004Though bivalve mollusks are keystone species and major species groups in aquaculture production worldwide, gamete biology is still largely unknown. This review aims to provide a synthesis of current knowledge in the field of sperm biology, including spermatozoa motility, flagellar beating, and energy metabolism; and to illustrate cellular signaling controlling spermatozoa motility initiation in bivalves. Serotonin (5-HT) induces hyper-motility in spermatozoa via a 5-HT receptor, suggesting a serotoninergic system in the male reproductive tract that might regulate sperm physiology. Acidic pH and high concentration of K+ are inhibitory factors of spermatozoa motility in the testis. Motility is initiated at spawning by a Na+-dependent alkalization of intracellular pH mediated by a Na+/H+ exchanger. Increase of 5-HT in the testis and decrease of extracellular K+ when sperm is released in seawater induce hyperpolarization of spermatozoa membrane potential mediated by K+ efflux and associated with an increase in intracellular Ca2+ via opening of voltage-dependent Ca2+ channels under alkaline conditions. These events activate dynein ATPases and Ca2+/calmodulin-dependent proteins resulting in flagellar beating. It may be possible that 5-HT is also involved in intracellular CAMP rise controlling cAMP-dependent protein kinase phosphorylation in the flagellum. Once motility is triggered, flagellum beats in asymmetric wave pattern leading to circular trajectories of spermatozoa. Three different flagellar wave characteristics are reported, including "full", "twitching", and "declining" propagation of wave, which are described and illustrated in the present review. Mitochondrial respiration, ATP content, and metabolic pathways producing ATP in bivalve spermatozoa are discussed. Energy metabolism of Pacific oyster spermatozoa differs from previously studied marine species since oxidative phosphorylation synthetizes a stable level of ATP throughout 24-h motility period and the end of movement is not explained by a low intracellular ATP content, revealing different strategy to improve oocyte fertilization success. Finally, our review highlights physiological mechanisms that require further researches and points out some advantages of bivalve spermatozoa to extend knowledge on mechanisms of motility

    Physiological functions of osmolality and calcium ions on the initiation of sperm motility and swimming performance in redside dace, Clinostomus elongatus

    No full text
    Reproductive potential of fish stocks is critically dependent on sperm performance in an aquatic environment. The aim of this study is to test hypotheses, which govern the initiation of sperm motility and swimming performance, through physiological functions of osmolality and Ca2+ ion, in a threatened species of freshwater fish, the redside dace, Clinostomus elongatus. Spermatozoa motility was activated in either ionic or non-ionic media spanning a range of osmolalities. The role of Ca2+ channels on induction of spermatozoa motility and velocity was experimentally investigated by diluting sperm in media that contain various Ca2+ channel blockers. Results show that initiation of spermatozoa motility is a hypo-osmolality dependent mechanism. Inhibitors for L-type Ca2+ channels partially prohibited initiation of spermatozoa motility, while velocity was significantly reduced in both L-type and T-type Ca2+ channel blockers. Examination using W-7, an inhibitor for Ca2+-dependent calmodulin, showed significant decreases in spermatozoa motility and velocity. Involvement for Ca2+ in axonemal beating was confirmed by significant increases in velocity after adding Ca2+ into the activation media, while motility remained unchanged in Ca2+ supplemented activation media. Together, these findings suggest the involvement of Ca2+ in hypo-osmolality-dependent initiation of spermatozoa motility mediated by activation of Ca2+ binding protein in the axoneme of a freshwater fish sperm. Blocking Ca2+ exchange through L- or T-type Ca2+ channel influences flagellar beating force and leads to decrease in spermatozoa velocity. (C) 2013 Elsevier Inc. All rights reserved

    Changes of sperm morphology, volume, density and motility and seminal plasma composition in

    No full text
    Eighteen spermiating males were randomly selected from a hatchery-reared stock and electronically tagged to record changes in their sperm quality parameters (spermatozoa morphology, ultrastructure and motility, ionic composition and osmolality of the seminal plasma, and sperm volume and density) during the spawning season. Stripping was performed at the beginning of March, April and May. The Barbus barbus spermatozoon has a head without acrosome, a midpiece with 4–6 mitochondria and proximal and distal centrioles, and a flagellum with the typical 9+2 pairs of microtubules. Apart from posterior width of the midpiece, morphological and ultrastructural parameters changed significantly during the reproductive season; generally by decreasing toward the end of reproductive season. Sperm volume also decreased from 0.42 in March to 0.15 ml in May, and density from 18.81 in March to 12.45 × 109 spz ml−1 in May. Osmolality (mOsmol kg−1) was 268 ± 4, 276 ± 2 and 268 ± 2 in March, April and May respectively. Chloride, sodium, calcium and potassium ion concentrations (mM) did not show significant differences between March and April (Cl−: 125.3 vs. 120.5, Na+: 75.7 vs. 69.7, Ca2+: 0.4 vs. 0.3 and K+: 84.7 vs. 84.0). The percentage of motile spermatozoa at 15 s post activation did not show a significant difference between dates, but the highest spermatozoa velocity at 15 s post activation was observed in April (91.4 ± 3.2 ”m s−1) and then decreased significantly towards the end of the reproductive season (80.6 ”m s−1 in May). However, lowest spermatozoa velocity was measured in March (70.4 ± 1.9 ”m s−1). This study supports the hypothesis that longer spermatozoa swim faster. Within one stripping, velocity and percentage motility decreased significantly with time post activation. In conclusion, changes observed in B. barbus sperm parameters during the reproductive season, suggest there is association between such changes and spermatozoa aging processes

    Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity.

    No full text
    Oyster aquaculture is expanding worldwide, where many farms rely on seed produced by artificial spawning. As sperm motility and velocity are key determinants for fertilization success, understanding the regulation of sperm motility and identifying optimal environmental conditions can increase fertility and seed production. In the present study, we investigated the physiological mechanisms regulating sperm motility in Eastern oyster, Crassostrea virginica. Sperm motility was activated in ambient seawater with salinity 4-32 PSU with highest motility and velocity observed at 12-24 PSU. In artificial seawater (ASW) with salinity of 20 PSU, sperm motility was activated at pH 6.5-10.5 with the highest motility and velocity recorded at pH 7.5-10.0. Sperm motility was inhibited or totally suppressed in Na+, K+, Ca2+, and Mg2+-free ASW at 20 PSU. Applications of K+ (500 ÎŒM glybenclamide and 10-50 mM 4-aminopyridine), Ca2+ (1-50 ÎŒM mibefradil and 10-200 ÎŒM verapamil), or Na+ (0.2-2.0 mM amiloride) channel blockers into ASW at 20 PSU inhibited or suppressed sperm motility and velocity. Chelating extracellular Ca2+ ions by 3.0 and 3.5 mM EGTA resulted in a significant reduction and full suppression of sperm motility by 4 to 6 min post-activation. These results suggest that extracellular K+, Ca2+, and Na+ ions are involved in regulation of ionic-dependent sperm motility in Eastern oyster. A comparison with other bivalve species typically spawning at higher salinities or in full-strength seawater shows that ionic regulation of sperm motility is physiologically conserved in bivalves. Elucidating sperm regulation in C. virginica has implications to develop artificial reproduction, sperm short-term storage, or cryopreservation protocols, and to better predict how changes in the ocean will impact oyster spawning dynamics

    Anti-androgen vinclozolin impairs sperm quality and steroidogenesis in goldfish.

    No full text
    International audienceIn mammals, vinclozolin (VZ) is known as anti-androgen, which causes male infertility via androgen receptor (AR) antagonism. In aquatic animals, the VZ effects on reproductive functions are largely unknown and results are somewhat contradictory. To understand VZ adverse effects on male reproduction, mature goldfish (Carassius auratus) were exposed to three nominal VZ concentrations (100, 400, and 800 ÎŒg/L) and alternations in gonadosomatic (GSI) and hepatosomatic indices (HSI), 17ÎČ-estradiol (E(2)), 11-ketotestosterone (11-KT) and sperm quality were investigated compared to the solvent control. One group was exposed to E(2) (nominal concentration of 5 ÎŒg/L), an estrogenic compound, as a negative control. Following one month exposure, GSI and HSI were unchanged in all VZ treated groups compared to solvent control. Sperm volume, motility and velocity were reduced in fish exposed to 800 ÎŒg/L VZ. This was associated with the decrease in 11-KT level, suggesting direct VZ effects on testicular androgenesis and sperm functions. In goldfish exposed to 100 ÎŒg/L VZ, 11-KT was increased but E(2) remained unchanged. This is, probably, the main reason for unchanged sperm quality at 100 ÎŒg/L VZ. In goldfish exposed to E(2), GSI and 11-KT were decreased, E(2) was increased and no sperm was produced. The present study shows different dose-dependent VZ effects, which lead to impairment in sperm quality via disruption in steroidogenesis. In addition to VZ effects through competitive binding to AR, our data suggests potential effects of VZ by direct inhibition of 11-KT biosynthesis in fish as well as abnormalities in sperm morphology

    A Review on Environmental Contaminants-Related Fertility Threat in Male Fishes: Effects and Possible Mechanisms of Action Learned from Wildlife and Laboratory Studies

    No full text
    Increasing global rates of diminished fertility in males has been suggested to be associated with exposure to environmental contaminants (ECs). The aquatic environments are the final repository of ECs. As the reproductive system is conserved in vertebrates, studies on the effects of ECs on fertility endpoints in fishes provide us with valuable information to establish biomarkers in risk assessment of ECs, and to understand the ECs-related fertility threat. The aim of the present review was to evaluate associations between ECs and fertility determinants to better understand ECs-related male fertility threat in male fishes. Wildlife studies show that the reproductive system has been affected in fishes sampled from the polluted aquatic environment. The laboratory studies show the potency of ECs including natural and synthetic hormones, alkylphenols, bisphenols, plasticizers, pesticides, pharmaceutical, alkylating, and organotin agents to affect fertility determinants, resulting in diminished fertility at environmentally relevant concentrations. Both wildlife and laboratory studies reveal that ECs adverse effects on male fertility are associated with a decrease in sperm production, damage to sperm morphology, alternations in sperm genome, and decrease in sperm motility kinetics. The efficiency of ECs to affect sperm quality and male fertility highly depends on the concentration of the contaminants and the duration of exposure. Our review highlights that the number of contaminants examined over fertility tests are much lower than the number of contaminants detected in our environment. The ECs effects on fertility are largely unknown when fishes are exposed to the contaminants at early developmental stages. The review suggests the urgent need to examine ECs effects on male fertility when a fish is exposed at different developmental stages in a single or combination protocol. The ECs effects on the sperm genome are largely unknown to understand ECs-related inheritance of reproductive disorders transmitted to the progeny. To elucidate modes of action of ECs on sperm motility, it is needed to study functional morphology of the motility apparatus and to investigate ECs-disrupted motility signaling

    Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859)

    No full text
    International audienceIn most teleost fishes, sperm cells are quiescent in the seminal plasma and are activated by either a drop (fresh water fish) or an increase in osmolality (marine fish) when released in the water. It is most interesting to examine how the mechanisms of sperm motility activation can adapt to a broad range of salinities, as applies to some euryhaline species, and particularly to the tilapia Sarotherodon melanotheron heudelotii, which can reproduce at salinities from 0 up to 120 in the wild. Here, the gonado-somatic index, semen characteristics, and the osmotic and ionic requirements of sperm motility activation were compared in S. m. heudelotii reared in fresh water (FW), sea water (SW), or hypersaline water (HW; salinities of 0, 35, and 70, respectively). No salinity-dependent differences were found in gonado-somatic index or semen characteristics, except for an increase of seminal plasma osmolality with increasing salinity (from 318 to 349 mOsm kg−1 in FW and HW fish, respectively). The osmolality range allowing the highest percentages of sperm activation broadened and shifted toward higher values with increasing fish ambient salinity (150–300, 300–800, and 500–1200 mOsm kg−1, for FW, SW, and HW fish, respectively). Nevertheless, at the three fish rearing salinities, sperm could be activated in media that were hypotonic, isotonic, or hypertonic relative to the seminal plasma, at least when some calcium was present above a threshold concentration. The [Ca2+] required for the activation of S. m. heudelotii sperm is (1) higher in fish reared at a higher salinity (2) higher in hypertonic than that in hypotonic activation media, whatever the fish rearing salinity, and (3) higher in the presence of Na+ or K+, the negative effects of which increased with an increase in fish rearing salinity. The [Ca2+]/[Na+] ​ ratios allowing for maximal sperm motility in SW or HW fish are close to those observed in natural environments, either in sea or hypersaline waters. In comparison to most teleosts with external fertilization, the total duration of sperm motility in S. m. heudelotii was exceptionally long (>2 hours regardless the fish rearing salinities). The decrease in sperm activity with increasing time since activation did not result from limiting energy reserves, as the addition of calcium in the activation medium caused most spermatozoa to become motile again. The comparison of sperm characteristics of S. m. heudelotii acclimated from FW to SW or HW with those of fish maintained all lifelong at their native salinity showed that adaptive responses were completed within 2 months or less
    corecore