221 research outputs found

    Non-linear biases, stochastically-sampled effective Hamiltonians and spectral functions in quantum Monte Carlo methods

    Get PDF
    In this article we study examples of systematic biases that can occur in quantum Monte Carlo methods due to the accumulation of non-linear expectation values, and approaches by which these errors can be corrected. We begin with a study of the Krylov-projected FCIQMC (KP-FCIQMC) approach, which was recently introduced to allow efficient, stochastic calculation of dynamical properties. This requires the solution of a sampled effective Hamiltonian, resulting in a non-linear operation on these stochastic variables. We investigate the probability distribution of this eigenvalue problem to study both stochastic errors and systematic biases in the approach, and demonstrate that such errors can be significantly corrected by moving to a more appropriate basis. This is lastly expanded to include consideration of the correlation function QMC approach of Ceperley and Bernu, showing how such an approach can be taken in the FCIQMC framework.Comment: 12 pages, 7 figure

    The analysis of phase, dispersion and group delay in InGaAsP/InP microring resonator

    Get PDF
    The Vernier operation with signal flow graph (SFG) is a graphical approach for analyzing the intricate photonic circuits mathematically and quick calculation of optical transfer function. Analysis of a cascaded microring resonators (CMRR) made of InGaAsP/InP semiconductor is presented using the signal flow graph (SFG) method which enables modelling the transfer function of the passive CMRR. These passive filters are mostly characterized by their frequency response. The theoretical calculations of the system is performed by the Vernier effects analysis. Two MRRs with radius of 100 μm which are vertically coupled together are used to generate resonant peaks. Here, the phase, dispersion and group delay of the generated signals are analyzed

    Temporal soliton: generation and applications in optical communications

    Get PDF
    In general, the temporal and spectral shape of a short optical soliton pulse does not change during propagation in a nonlinear medium due to the Kerr effect which balances the chromatic dispersion. Microring resonators (MRRs) can be used to generate chaotic signals. The smaller MRR is used to form the stopping and filtering system. The employed optical material was InGaAsP/InP, which is suitable for use in the practical devices and systems. The tuning and manipulation of the bandwidth of the soliton signals is recommended to control the output signals. The MRRs can be applied to produce ultra-short pulses, where the medium has a nonlinear condition, thus, using of soliton laser becomes an interesting subject. Therefore, an ultra-short pulse in the scope of pico and femtoseconds soliton pulses can be utilized for many applications in engineering communications. In order to obtain smaller bandwidth of the optical soliton pulses, we propose integrating series of MRRs. In this study, 5 fs soliton pulse could be generated using a series of five MRRs. The soliton signals experience less loss during the propagation, where they are more stable compared to normal conventional laser pulses. Using the series of MRRs connected to an add/drop system, shorter soliton bandwidth and highly multi soliton pulses can be obtained. Therefore, generation of ultra-short multi picosecond (1.2 and 1.3 ps), could be performed, where the radius of the add/drop system has been selected to 50 and 300 μm respectively

    Light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks

    Get PDF
    We present updated results of the CP-PACS calculation of the light hadron spectrum in Nf=2N_{\rm f}=2 full QCD. Simulations are made with an RG-improved gauge action and a tadpole-improved clover quark action for sea quark masses corresponding to mPS/mV0.8m_{\rm PS}/m_{\rm V} \approx 0.8--0.6 and the lattice spacing a=0.22a=0.22--0.09 fm. A comparison of the full QCD spectrum with new quenched results, obtained with the same improved action, shows clearly the existence of sea quark effects in vector meson masses. Results for light quark masses in Nf=2N_{\rm f}=2 QCD are also presented.Comment: Latex 3 pages, 6 PostScript figures, Talk presented at LATTICE99(QCD Spectrum and Quark Masses

    Direct CP Violation in Untagged B-Meson Decays

    Get PDF
    Direct CP violation can exist in untagged, neutral B-meson decays to certain self-conjugate, hadronic final states. It can occur if the resonances which appear therein permit the identification of distinct, CP-conjugate states -- in analogy to stereochemistry, we term such states ``CP-enantiomers.'' These states permit the construction of a CP-odd amplitude combination in the untagged decay rate, which is non-zero if direct CP violation is present. The decay B\to \pi^+\pi^-\pi^0, containing the distinct CP-conjugate states \rho^+ \pi^- and \rho^- \pi^+, provides one such example of a CP-enantiomeric pair. We illustrate the possibilities in various multi-particle final states.Comment: 8 pages, ReVTeX 4.

    FDG-PET/CT of COVID-19 and Other Lung Infections

    Get PDF
    While not conventionally used as the first-line modality, [18F]-2-fluoro-2-deoxy-D-glucose (FDG) - positron emission tomography/computed tomography (PET/CT) can identify infection and inflammation both earlier and with higher sensitivity than anatomic imaging modalities [including chest X-ray (CXR), computed tomography (CT), and magnetic resonance imaging (MRI)]. The extent of inflammation and, conversely, recovery within the lungs, can be roughly quantified on FDG-PET/CT using maximum standardized uptake value (SUVmax) values. The Coronavirus disease 2019 (COVID-19) pandemic has highlighted the value of FDG-PET/CT in diagnosis, elucidation of acute pulmonary and extrapulmonary manifestations, and long-term follow up. Similarly, many other pulmonary infections such as previously documented coronaviruses, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, cryptococcosis, histoplasmosis, mucormycosis, and typical/atypical mycobacterial infections have all been identified and characterized using FDG-PET/CT imaging. The goal of this review is to summarize the actual and potential benefits of FDG-PET/CT in the imaging of COVID-19 and other lung infections. Further research is necessary to determine the best indications and clinical applications of FDG-PET/CT, improve its specificity, and ultimately ascertain how this modality can best be utilized in the diagnostic work up of infectious pathologies

    Perturbative Matching of the staggered four-fermion operators for e'/e

    Full text link
    Using staggered fermions, we calculate the perturbative corrections to the bilinear and four-fermion operators that are used in the numerical study of weak matrix elements for ϵ/ϵ\epsilon'/\epsilon. We present results for one-loop matching coefficients between continuum operators, calculated in the Naive Dimensional Regularization (NDR) scheme, and gauge invariant staggered fermion operators. These results, combined with existing results for penguin diagrams, provide the complete one-loop renormalization of the staggered four-fermion operators.Comment: 36 pages. will appear in physical review

    The Electric Dipole Moment and CP Violation in BXsl+lB \to X_s l^+ l^- in SUGRA Models with Nonuniversal Gaugino Masses

    Get PDF
    The constraints of electric dipole moments (EDMs) of electron and neutron on the parameter space in supergravity (SUGRA) models with nonuniversal gaugino masses are analyzed. It is shown that with a light sparticle spectrum, the sufficient cancellations in the calculation of EDMs can happen for all phases being order of one in the small tanβ\beta case and all phases but ϕμ\phi_{\mu} (ϕμ<π/6|\phi_{\mu}| <\sim \pi/6) order of one in the large tanβ\beta case. This is in contrast to the case of mSUGRA in which in the parameter space where cancellations among various SUSY contributions to EDMs happen ϕμ|\phi_{\mu}| must be less than π/10\pi/10 for small tanβtan\beta and O(102){\cal{O}}(10^{-2}) for large tanβtan\beta. Direct CP asymmetries and the T-odd polarization of lepton in BXsl+lB\to X_s l^+l^- are investigated in the models. In the large tanβ\beta case, ACP2A_{CP}^2 and PNP_N for l=μ\mu (τ\tau) can be enhanced by about a factor of ten (ten) and ten (three) respectively compared to those of mSUGRA.Comment: 12 pages, latex, 4 figures, a few change

    Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions

    Full text link
    We perform a study of matrix elements relevant for the Delta I=1/2 rule and the direct CP-violation parameter epsilon-prime from first principles by computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions, and employ the chiral perturbation theory method for studying K to 2 Pi decays. Having obtained a reasonable statistical accuracy, we observe an enhancement of the Delta I=1/2 amplitude, consistent with experiment within our large systematic errors. Finite volume and quenching effects have been studied and were found small compared to noise. The estimates of epsilon-prime are hindered by large uncertainties associated with operator matching. In this paper we explain the simulation method, present the results and address the systematic uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev. D. Minor errors are corrected, some wording and notation change

    SensiBlend: Sensing blended experiences in professional and social contexts

    Get PDF
    Unlike traditional workshops, SensiBlend is a living experiment about the future of remote, hybrid, and blended experiences within professional and other social contexts. The interplay of interpersonal relationships with tools and spaces-digital and physical-has been abruptly challenged and fundamentally altered as a result of the COVID-19 pandemic. With this meta-workshop, we seek to scrutinize and advance the role and impact of Ubiquitous Computing in the new "blended"social reality, and raise questions relating to the specific attributes of socio-Technical experiences in the future organization of interpersonal relationships. How do we better equip people to deal with blended experiences? What dimensions of socio-Technical experiences are at stake? To this end, we will utilize the occasion of a virtual UbiComp in combination with novel remote-working tools and participatory sensing with attendees to collectively examine, discuss, and elicit the potential routes of augmenting social practices in a discourse about the future of blended working, socializing, and living
    corecore