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(FDG) - positron emission tomography/computed tomography (PET/CT) can identify infection
and inflammation both earlier and with higher sensitivity than anatomic imaging modalities
[including chest X-ray (CXR), computed tomography (CT), and magnetic resonance imaging
(MRI)]. The extent of inflammation and, conversely, recovery within the lungs, can be roughly
quantified on FDG-PET/CT using maximum standardized uptake value (SUVmax) values. The
Coronavirus disease 2019 (COVID-19) pandemic has highlighted the value of FDG-PET/CT
in diagnosis, elucidation of acute pulmonary and extrapulmonary manifestations, and long-
term follow up. Similarly, many other pulmonary infections such as previously documented
coronaviruses, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, cryptococco-
sis, histoplasmosis, mucormycosis, and typical/atypical mycobacterial infections have all
been identified and characterized using FDG-PET/CT imaging. The goal of this review is to
summarize the actual and potential benefits of FDG-PET/CT in the imaging of COVID-19 and
other lung infections. Further research is necessary to determine the best indications and
clinical applications of FDG-PET/CT, improve its specificity, and ultimately ascertain how this
modality can best be utilized in the diagnostic work up of infectious pathologies.
Semin Nucl Med 52:61-70 © 2021 Elsevier Inc. All rights reserved.
Introduction

For decades, acute lower respiratory tract infections have
been one of the three leading causes of mortality in both

adult and pediatric populations, creating a substantial bur-
den on the healthcare system. While standard radiologic
imaging techniques, mainly chest X ray (CXR) and CT, are
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the primary imaging modalities to diagnose lung infection,
FDG-PET/CT has proven to be effective in cases where con-
ventional imaging falls short. Not only can metabolic imaging
identify and track the infection earlier than other methodolo-
gies, but it can also provide vital information at the molecular
level.1,2 The high sensitivity of this modality coupled with
wider anatomic coverage generates a more comprehensive
and complete assessment of the patient’s global disease bur-
den, allowing for personalization of treatment strategy.

While the FDG-PET/CT imaging modality has primarily
been reserved for imaging of malignancies, many authors
have also recognized its value in non-neoplastic processes
such as pulmonary infections. This is due to the fact that
FDG acts as a glucose analogue, and thus gets taken up by
the cell via glucose transporter 1(GLUT-1).2 After cellular
uptake, FDG is phosphorylated by the rate-limiting enzyme
hexokinase, trapping FDG-6-phosphate in the cell.2 This
mechanism allows FDG-PET/CT to identify sites with
increased glucose utilization and metabolism, which are non-
specific but common markers of infection, inflammation,
and malignancies.
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Ultimately, combining the functional aspects of FDG-PET/
CT with the structural/anatomic facets of CT has the poten-
tial to revolutionize the diagnosis and treatment of pulmo-
nary infections. While not normally utilized as a stand-alone
methodology in infectious/inflammatory processes, FDG-
PET/CT imaging has great utility when used in conjunction
with other imaging techniques, as it provides additional
information on the molecular level and can accurately quan-
tify disease burden. This review aims to highlight the value
of nuclear imaging in elucidating a variety of lung infections.
Mechanism of Localization of
FDG in Inflammatory and
Infectious Diseases
The introduction of PET/CT using FDG opens new areas of
research in diagnosis of inflammatory and infectious diseases.
FDG is a nonspecific tracer, and its level of uptake is propor-
tional to the cellular metabolic rate and the density of glucose
transporters, thus FDG accumulates at sites of infection and
inflammation.2-5 It is well established that inflammatory
response, focal hyperemia, and increased vascular permeabil-
ity are correlated with high uptake of FDG, with enhanced
tissue blood perfusion leading to greater FDG delivery to the
lesion site and local immune response resulting in release of
proinflammatory cytokines and migration of inflammatory
cells.6,7 As activated inflammatory cells such as neutrophils,
macrophages, lymphocytes, and fibroblasts significantly take
up FDG, there is a direct correlation between the FDG
uptake and the quantity of inflammatory cells in both acute
and chronic inflammation where expression of active glucose
transporters is upregulated.8,9

FDG avidity has been reported in the development of vari-
ous pulmonary inflammatory and infectious diseases. In
acute infection, FDG is absorbed mainly by activated paren-
chymal neutrophils, which are highly dependent on anaero-
bic glycolysis and demand high uptake of glucose. Therefore,
FDG accumulates in the interstitial lung tissue and alveolar
airspaces, permitting study of the behavior of inflammatory
cells in their local microenvironment.4,10
COVID-19
Over the past year, the global COVID-19 pandemic caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has affected over 170 million people worldwide,
resulting in millions of patients developing pulmonary symp-
toms serious enough to require hospitalization and serial
imaging. While reverse transcription-polymerase chain reac-
tion (RT-PCR) CXR, and less commonly chest CT have been
the primary tools of diagnosis, FDG-PET/CT may inciden-
tally detect undiagnosed cases of COVID-19 in the early
stages of infection, when symptoms are nonspecific. Recent
studies have reported incidental FDG-PET/CT findings con-
firming COVID-19 in asymptomatic patients, including one
series of 7 patients with 2 consecutive negative RT-PCR
tests.11 The authors found that the pulmonary lesions dis-
played significantly increased SUVmax (mean § standard
deviation, 3.44 § 2.03 vs 0.54 § 0.19) when compared to
the lungs of control subjects.11 In another study, FDG-PET/
CT showed new lung infiltrates in asymptomatic patients
roughly 7 days (range of 6.4 § 7.8 days) prior to symptom
onset.12 Therefore, routine staging FDG-PET/CT scans may
show incidental but typical imaging findings of COVID -19
and help initiate further workup (Fig. 1).

COVID-19 pneumonia is FDG avid, and numerous studies
have documented lung uptake in both asymptomatic and
symptomatic patients. As is typical on diagnostic CT, on
FDG-PET/CT, ground glass opacifications (GGOs) with or
without superimposed consolidation are appreciated in a
peripheral, basilar, and posterior predominant pattern with
increased metabolic activity.13 Less intense uptake may be
seen in lymph nodes and bone marrow.14 In one of the earli-
est case reports of PET/CT imaging of COVID-19, Qin et al
described 4 presumed cases with pulmonary involvement (a
limitation of this case series being that SARS-CoV-2 nucleic
acid testing was not done in 3 of the 4 and 1 case was PCR
negative). However, at least 2 lobes showed SUVmax values
ranging from 4.6 to 12.2 in areas that indicated GGOs on ini-
tial CT.15 In 3 of the 4 cases, FDG-positive supraclavicular
and mediastinal nodes were seen with SUVmax ranging
between 5.4 and 7.15 Zou et al16 reported a case of suspected
lung malignancy which after staging with FDG-PET/CT,
revealed a right lung FDG-avid mass (SUVmax of 4.9) with
additional uptake in the right paratracheal and hilar nodes as
well as bone marrow (Fig. 2). Ultimately, the final diagnosis
was COVID-19 confirmed by RT-PCR (Fig. 2).16 Authors
have also utilized FDG-PET/CT imaging to quantify the extent
of inflammation in the lungs, due to the fact that nuclear imag-
ing can detect inflammation even before anatomic changes are
present. For instance, Dietz et al17 classified COVID-19
induced inflammation based on hypermetabolic volume and
SUVmax values; a low level of inflammation was classified by
a hypermetabolic volume less than 50 mL and SUVmax less
than 7, with any values above those levels considered a high
level of inflammation. Therefore, FDG-PET/CT can be utilized
in conjunction with clinical assessment to objectively deter-
mine the degree of disease severity.

Although there is no primary application for FDG-PET/CT
in the diagnostic algorithm of patients with suspected
COVID-19, there could be indications for metabolic imaging
in the evaluation of residual disease and recovery. As part of
the normal healing process, pulmonary infections may result
in scar and/or organizing pneumonia, and continue to show
radiographic abnormality, which may be indistinguishable
from parent infection. This leads to longer and unnecessary
follow-up imaging, while in reality, there are no active
inflammatory lesions in the pulmonary parenchyma. In these
instances, anatomic imaging modalities, including CXR and
chest CT remain abnormal, while metabolic and functional
imaging modalities, such as FDG-PET/CT, can accurately
confirm the resolution of active inflammatory process.18,19

Moreover, we emphasize the fact that the interpretation of



Figure 1 A 53-year-old male with a history of colorectal cancer presented for restaging FDG-PET/CT. Axial low dose CT
image (A) showing incidental peripheral ground-glass opacity involving the posterior right lower lobe lung (arrows),
with borderline hypermetabolism (SUVmax of 2.2) on corresponding CT attenuation corrected PET image (arrows in
B). Additionally, mild uptake (SUVmax of 2.6) was seen in the right hilar region likely representing reactive lymphade-
nopathy (white arrowhead in B). Given the morphology of lung opacities, equivocal FDG uptake, and clinical suspi-
cion, patient underwent RT-PCR testing and was confirmed to have COVID-19.

Figure 2 (A) PET maximum intensity projection image shows a fluorine 18 fluorodeoxyglucose (FDG)�avid mass
(arrow) with a maximum standardized uptake value of 4.9 in the right lung. Increased accumulation of FDG in the
right paratracheal, right hilar lymph nodes (arrowheads), and bone marrow are also noted. (B) Low-dose axial CT scan
and, (C) PET/CT fusion image show ground-glass opacities with areas of focal consolidation (black arrow) primarily in
the right upper lobe and a focal opacity in the left upper and right middle lobes (white arrows). (D) Follow-up CT scan
obtained 4 days later demonstrates progression of lesions in bilateral upper and right middle lobes (arrows) with newly
developed focal opacities in the left upper and lower lobes (arrows). Figure 2 reproduced with permission from Zou S,
Zhu X. FDG PET/CT of COVID-19. Radiology 2020;296: E118-E118.
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FDG-PET/CT should not be limited to the evaluation of
oncologic conditions. With the growing evidence of the
detection of COVID-19 on FDG-PET/CT studies, radiologists
and nuclear medicine physicians should be aware of the fea-
tures of SARS-CoV-2 infection on FDG-PET/CTs, as this may
lead to the detection of crucial nononcologic pathologies. In
patients with suspicious FDG-PET/CT findings for COVID-
19, we recommend a low threshold for clinical/paraclinical
screening and diagnostic testing such as PCR. This will allow
earlier recognition, detection, and treatment of this poten-
tially life-threatening and devastating disease, as patients
undergoing FDG-PET/CT studies (usually for oncologic indi-
cations) are commonly immunocompromised and are more
prone to severe disease or complications.20 On the other
hand, early recognition of suspicious patterns on FDG-PET/
CT can help ensure optimal postexposure precautions and
implementation of recommendations sooner.
FDG-PET/CT and
Extrapulmonary Manifestations
of COVID-19
COVID-19 is known to be associated with extrapulmonary
involvement, such as renal dysfunction, hepatic, vascular,
and myocardial injury, as well as neuromuscular and
Figure 3 FDG-PET/CT scan of a 27-year-old woman with persi
sentative axial (A, B, D) and coronal (C) images are shown. Th
(arrows). The uptake of temporal lobes were symmetric and n
from Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkar
hypoactive orbitofrontal cortex in anosmia of COVID-19. Acad
gastrointestinal abnormalities. Arterial and venous throm-
bosis has also been reported in hospitalized COVID-19
patients, particularly those who are severely ill. A US regis-
try of 1114 COVID-19 patients reported that major arterial
or venous thromboembolic complications 30 days from
diagnosis occurred in 35.3% of 170 hospitalized intensive
care unit (ICU) patients and only 2.6% of 229 hospitalized
non-ICU patients.21 Recent studies note a potential role of
FDG-PET/CT imaging in detecting venous thrombosis
throughout the body, as clots contain an abundance of acti-
vated white blood cells and platelets, which are highly gly-
colytic.22-25 Progression of the disease from isolated
pulmonary involvement to a systemic condition has a poor
prognosis and can result in multiorgan failure26-31 Thus,
many authors have focused on the utilization of FDG-PET/
CT for assessment of the extrapulmonary manifestations of
COVID-19. Karimi-Galougahi et al32 noted decreased meta-
bolic activity in the orbitofrontal cortex associated with the
COVID-19 induced anosmia (Fig. 3). In addition, these
authors used FDG-PET/CT to investigate COVID-19
induced facial nerve palsy, and FDG-PET/CT findings have
also indicated reduced neurological radiotracer uptake in
several brain areas prior to symptom onset, during active ill-
ness, and 6 months after infection.33-35 The acute reduction
in uptake was primarily found in the prefrontal cortex,
mimicking the patterns of several neurodegenerative disor-
ders.33-35 Other authors such as Sollini et al36 have
stent anosmia and positive PCR for SARS-CoV-2. Repre-
ere was decreased uptake in the left orbitofrontal cortex
ormal (arrows, D). Figure 3 reproduced with permission
am M, Raad N, Haseli S. 18FDG PET/CT scan reveals
emic radiology 2020; 27:1042-1043.
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identified increased FDG uptake in vasculature in those
patients complaining of persistent symptoms postinfection.
They found increased uptake in the thoracic aorta, right
iliac artery, and femoral arteries, suggesting post COVID-19
vasculitis in symptomatic survivors.36 Bai et al11 found
increased SUVmax in the liver of COVID-19 patients (4.31
§ 0.91 vs 2.86 § 0.66, P= 0.017), indicating COVID-19
induced hepatocyte injury, although clinically significant
liver injury was uncommon. Halsey et al37 incidentally
found increased gastrointestinal and renal uptake in asymp-
tomatic COVID-19 patients with SUVmax values of 3.85 §
1.12 and 4.03 § 0.94 respectively. Though FDG-PET/CT
has not been routinely utilized in presumed COVID-19
induced myocarditis, Puntmann et al38 reported that car-
diac MRI (CMR) is abnormal in 78% and ongoing myocar-
dial inflammation in 60% of recently recovered COVID-19
patients at an average of 71 days postdiagnosis, suggesting
significant residual disease burden. In this setting, FDG-
PET/CT could have potential utility not only in diagnosis
but also in differentiating between acute and chronic myo-
cardial injury. Ultimately, further research is necessary to
determine the added benefits of FDG-PET/CT imaging in
assessing long-term extrapulmonary sequelae of COVID-
19.
Figure 4 Grading of vaccine-associated hypermetabolic lymph
size: Grade 1, mild uptake intensity (SUVmax <2.2); Grade 2
3, high uptake intensity (SUVmax �4) in normal-size nodes; a
enlarged nodes. Each row represents one patient. From left t
MIP image. HLN was identified in the axillary and supraclavic
as annotated by black arrows) in each of the following patie
imaged 9 days following the first vaccine dose (SUVmax of 1
up, imaged 13 days following the second vaccine dose (SUV
referred for follow-up study 10 days following the first vaccin
lobe lung cancer patient referred for staging 1 day following
node diameter of Patient D was noted to be 14 mm. Brown arr
tion site on the MIP images. HLN, hypermetabolic lymphad
adapted with permission from Cohen, D., Krauthammer, S.
lymphadenopathy following administration of BNT162b2 mR
PET-CT and relevance to study interpretation. Eur J Nucl
10.1007/s00259-021-05314-2. http://creativecommons.org/lic
FDG-PET/CT and COVID-19
Vaccination
A routine FDG-PET/CT, because of its excellent sensitivity, may
capture changes related to recent COVID-19 vaccination. Recent
research has shown that reactive lymph nodal uptake on FDG-
PET/CT may appear within a few days and persist for several
weeks post COVID-19 vaccination.39-41 For instance, Eshet et
al42 reported increased FDG uptake in the ipsilateral axillary
lymph node with median SUVmax values of 2.9§ 1.3, up to 10
weeks after vaccination. Avner et al43 reported SUVmax values of
up to 9.4 in the left axilla, retro pectoral space, and proximal arm
6 days after the second dose of Pfizer COVID-19 vaccine. These
findings are not unexpected given previous evidence citing ipsi-
lateral axillary node FDG uptake in influenza vaccine recipients.44

However, it is imperative that interpreting physicians recognize
this manifestation in oncologic patients to avoid unnecessary
biopsy and restaging (Fig. 4).39
Respiratory Viral Infections
The most common causes of respiratory infection are viral
pathogens, including influenza virus, human parainfluenza
adenopathy based on FDG-uptake intensity and nodal
, moderate uptake intensity (2.2 � SUVmax <4); Grade
nd grade 4, high FDG-uptake intensity (SUVmax �4) in
o right: CT, PET, and fusion PET-CT axial slices and a
ular lymph nodes (most likely due to recent vaccination,
nts: Patient A: colon cancer patient referred for staging
.97), Patient B: rectal cancer patient referred for follow-
max of 3.39), Patient C: prior history of breast cancer
e dose (SUVmax of 10.10), and Patient D: right upper
the booster vaccine dose (SUVmax of 14.34). Lymph
ows indicate increased FDG uptake at the vaccine injec-
enopathy; MIP, maximal intensity projection. Figure 4
H., Wolf, I., & Even-Sapir, E. (2021). Hypermetabolic
NA Covid-19 vaccine: incidence assessed by (18)F-FDG
Med Mol Imaging, 48(6), 1854-1863. https://doi.org/
enses/by/4.0/.
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virus, rhinovirus, respiratory syncytial virus, and adenovirus.
On top of that, there have been several regional and global
outbreaks of novel respiratory viral infections during the past
decades, including severe acute respiratory syndrome
(SARS), Middle East respiratory syndrome (MERS), H1N1
and H5N1 influenza, and most recently, COVID-19. CXR
and CT are the routinely utilized imaging modalities to inves-
tigate pulmonary changes at presentation, as well as to moni-
tor disease progression and response to treatment. The most
common CT findings in viral respiratory illnesses include dif-
fuse ill-defined GGOs, consolidation, and interlobular septal
thickening.45 These findings however are highly non-specific
and can also be seen in some inflammatory diseases, as well
as some nonviral infections.46

Acute inflammatory response has been shown to play an
important role in the pathogenesis of severe respiratory dys-
function in respiratory viral infections such as H1N1, H5N1,
and SARS.47,48 During the acute inflammatory phase of infec-
tion, activated neutrophils heavily utilize anaerobic glycolysis,
which leads to increased FDG uptake.49 Hence, FDG-PET/CT
has the potential to assess the degree of inflammatory response
in respiratory viral infections.47 This uptake can be quantified
and may be very helpful in delineating the extent of inflamma-
tion in lung tissue. Furthermore, it has been shown that
increased FDG uptake is present not only in nonaerated por-
tions of the lungs on CT scan, but also areas with preserved aer-
ation. This suggests improved sensitivity and more accurate
estimation of inflammation utilizing FDG-PET/CT.48 Tracking
the underlying inflammation could potentially be useful in
monitoring disease progression, response to treatment, and con-
firming resolution of infection.
Pulmonary Fungal Infections
Taking advantage of the quantifiable FDG uptake during the
inflammatory response to infections, PET/CT has the poten-
tial to be utilized for initial diagnosis, staging of invasive
Figure 5 Fungal pneumonia in a 40-year-old man with AIDS
puted tomographic (CT) scan demonstrates a 6£ 3.5-cm thic
right lower lung. (B) FDG-PET scan demonstrates intense, het
aspect of the right lower lung, a finding that corresponds to t
lymphomatous involvement of the pulmonary parenchyma. T
was not possible to distinguish lymphoma from infection on
duced with permission from Love, C., Tomas, M. B., Tronco
and inflammation. Radiographics, 25(5), 1357-1368. https://d
fungal infections, disease progression, and response to treat-
ment.50-52 Semiquantitative FDG uptake has already been
shown to be more accurate in measuring disease activity
compared to morphological changes in lesion size visible on
anatomic imaging.53 Once the primary infection resolves,
FDG-PET/CT can be useful in confirming inflammatory reso-
lution in the setting of persistent structural abnormalities
seen on other modalities.53 Conversely, an increase in SUV-
max has been shown to be associated with disease progres-
sion.53 In addition to establishing diagnosis, FDG-PET/CT
can also be useful in localizing occult fungal infections, par-
ticularly in immunocompromised patients (Fig. 5).54
Aspergillosis
Showing prominent FDG-avidity, pulmonary aspergillosis looks
very similar to pulmonary malignancy on FDG-PET/CT, poten-
tially creating confusion for the reading radiologist.51,55 How-
ever, FDG-PET/CT can be effective in differentiating invasive
and noninvasive pulmonary aspergillosis, given the higher peak
SUV in the former.14 Imaging manifestations of invasive asper-
gillosis are defined as multiple hypermetabolic nodules, while
in noninvasive aspergillosis, solitary metabolic nodules with
halo pattern have been described14 FDG-PET/CT can also be
utilized to investigate response to therapy in pulmonary asper-
gillosis, and has value in uncovering occult infection in the
immunocompromised patient.56
Blastomycosis
Pulmonary blastomycosis can also mimic primary and meta-
static lung malignancy on FDG-PET/CT, mostly due to high
uptake in a nodular pattern.57,58 Preclinical studies on animal
models with blastomycosis showed FDG uptake levels higher
than lymphoma.59 A potential of FDG-PET/CT in pulmonary
blastomycosis is the fact that it can show the true extent of
active infection by discovering disease sites which are other-
wise clinically occult.59
and newly diagnosed anaplastic lymphoma. (A) Com-
k- walled cavitary lesion in the posterior segment of the
erogeneous accumulation of radiotracer in the posterior
he abnormality identified at CT and that could indicate
he final diagnosis, however, was fungal pneumonia. It
the basis of the FDG-PET finding alone. Figure 5 repro-
, G. G., & Palestro, C. J. (2005). FDG PET of infection
oi.org/10.1148/rg.255045122.
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Candidiasis
Candidiasis lesions show increased FDG avidity on nuclear imag-
ing, thus this modality could be utilized in guiding anticandida
therapy.60 In support of this, Xu et al53 performed a preliminary
study in patients with chronic disseminated candidiasis, and
noted that FDG-PET/CT provided utility in antifungal therapy
response. FDG-PET/CT can also help in the detection of occult
sites of candidiasis in immunocompromised patients 50
Coccidioidomycosis
Pulmonary coccidioidomycosis lesions have abnormal FDG
uptake on PET/CT, but this modality is of limited use due to
the difficulty differentiating these lesions from malignancy.61

Nonetheless, the median SUVmax is often more elevated in
malignant lesions relative to coccidioidal nodules with SUVmax
of greater than 5.9 suspicious for malignancy.62 Nia et al63

reported a case of pulmonary coccidiomycosis with systemic
involvement and discussed that FDG-PET/CT has the potential
to guide medical management and help with investigating the
extent of the disease, as well as response to therapy.
Cryptococcosis and Histoplasmosis
Pulmonary cryptococcus involvement can show variable lev-
els of FDG avidity in PET/CT, ranging from mild to pro-
nounced uptake.64,65 The most common presentation is a
solitary nodule, and less frequently: scattered nodular, clus-
tered nodular, mass-like and bronchopneumonic patterns.66

However, pulmonary cryptococcosis can show a similar pat-
tern of FDG uptake to that of lung cancer.67,68 Thus, crypto-
coccosis should be kept in the differential diagnosis when
evaluating lung malignancy with FDG-PET/CT, especially in
endemic areas. Thus far, multiple studies have indicated that
FDG-PET/CT is unhelpful diagnostically, but may be useful
when guiding response to treatment.51 Pulmonary histoplas-
mosis also shows FDG avidity in PET/CT, both in the pri-
mary pulmonary infection and the mediastinal and hilar
lymph nodes.69 As with many other pulmonary fungal infec-
tions, nuclear imaging manifestations are similar to lung
malignancy and create false positives, reducing the specificity
of FDG-PET/CT in the detection of lung malignancies in
endemic areas.51,70 However, some authors have noted that
dual-time FDG-PET/CT may be helpful in discriminating
benign from malignant lesions.71 In chronic histoplasmosis,
Nagelschneider et al72 have described a flip flop fungal sign
on FDG-PET/CT that helps differentiate histoplasmosis from
malignancy. Mittal et al73 showed that FDG-PET/CT can be
used in initial staging as well as in response to treatment.
These authors have suggested the utility of FDG-PET/CT in
the early identification of lesions amenable to therapy.
Mucormycosis
In a report, Dang et al74 described their FDG-PET/CT find-
ings in a case of pulmonary mucormycosis as prominent
peripheral uptake in a heterogeneous soft tissue mass. Recent
studies have also begun to recognize increased rhino-orbital
mucormycosis susceptibility in patients with moderate to
severe COVID-19 infection.75
Tuberculosis Infections
Tuberculosis (TB) infection of the lung primarily involves
formation of a well-structured granuloma, in which immune
cells and bacteria aggregate. In approximately 80% of cases,
the lungs are the most common site of infection, but tubercu-
losis can disseminate to nearly any tissue or organ by hema-
togenous, lymphatic, or contiguous spread.49

FDG-PET/CT is a noninvasive tool capable of early detec-
tion and assessment of the disease involvement. This imaging
modality is also capable of indicating enhanced glycolytic
activity in both anaerobic and aerobic cells, thereby broaden-
ing its utility. This technique can demonstrate the disease
extent, guide biopsy from active lesions, and find distant
occult foci.76 It can also measure treatment response to sig-
nificantly optimize patient management.

As radiolabeled FDG accumulates in TB-related neutro-
phils, macrophages, and T-lymphocytes (all present in active
granulomatous foci), this imaging method has high precision
in identifying active granulomatous sites.77,78 The ability of
FDG-PET/CT to detect changes in metabolic uptake of TB
lesions may be considered an accurate complementary tool
to conventional anatomical imaging. A study by Stelzmueller
et al79 demonstrated that, while both FDG-PET/CT and CT
scanning provide useful diagnostic information at both initial
assessment and follow-up, FDG-PET/CT was more accurate
and sensitive than CT scanning in the detection of suspicious
pulmonary and extrapulmonary TB lesions. Other authors
have reported that the addition of nuclear imaging to ana-
tomic modalities such as CT further increased the sensitivity
of this modality to identify small lesions, affected lymph
nodes, and allowed differentiation between active and inac-
tive lesions.80,81

Recent studies have also focused on the utilization of FDG-
PET/CT for assessment of treatment effectiveness. Malherbe
et al82 concluded that quantitative metrics of FDG-PET/CT
showing mean standardized lesion activity were predictive of
treatment outcome. After one year of treatment, there was
continuous dynamic reduction of lesions’ activity demon-
strated by FDG-PET/CT imaging.82 Ultimately, FDG-PET/CT
technique is of great value in determining TB progression,
evaluating the efficacy of midterm treatment,83,84 and in the
detection of post-treatment disease recurrence.85

While FDG-PET/CT has shown to be effective in assessing
metabolic activity of pulmonary lesions, some studies have indi-
cated that FDG-PET/CT is more efficient than CT in assessing
extrapulmonary involvement.86 As 15% of TB patients present
with extrapulmonary disease, it is imperative to identify the
most sensitive diagnostic techniques, as imaging characteristics
can often make M. tuberculosis lesions indistinguishable from
tumors.87 For example, Mao et al87 have noted that the clinical
and traditional imaging features of abdominal tuberculosis can
mimic pancreatic cancer, and the location is often difficult to
biopsy. In these circumstances, FDG-PET/CT imaging
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combined with tuberculin testing or latent TB serology can help
elucidate the correct diagnosis and help patients avoid unneces-
sary procedures.
Nontuberculous Mycobacterial Infections
In addition to TB infection, nontuberculous mycobacterial
(NTM) infections can be detected using FDG-PET/CT. NTM
infections are caused by a diverse and emerging group of patho-
gens and are rapidly increasing worldwide.88 Mycobacterium
avium complex (MAC) is the most frequently isolated atypical
mycobacterium found in these cases. Similar to TB, the lung is
the most common site of involvement leading to nonspecific
clinical signs which could remain underdiagnosed.
As FDG collects in granulation tissues formed by activa-

tion of macrophages in NTM infection, the amount of FDG
accumulation is positively associated with the scope of active
inflammatory areas.89 In a study by Del Giudice et al,90

FDG-PET/CT was found useful in revealing the activity and
extent of disease by monitoring metabolic activity of various
pulmonary lesions in NTM disease. Another investigation by
Demura et al91 assessed the role of FDG-PET/CT in the diag-
nosis and treatment monitoring of NTM infection. They con-
firmed that after one or two years of therapy for MAC,
the FDG uptake associated with disease decreased, in spite of
the persistence of lesions on CT scanning.91

Another significant feature of FDG-PET/CT imaging is the
potential capability in evaluating disease progression and fol-
low-up in NTM patients. Namkoong et al,92 described an
HIV and MAC-infected patient whose FDG-PET/CT findings
identified disease progression on follow-up. In addition, this
imaging technique was useful for assessing the required dura-
tion of anti-mycobacterial therapy. Accordingly, FDG-PET/
CT could play a valuable role in patient management, partic-
ularly in complicated cases such as HIV, in which TB and
NTM infections often result in disseminated disease and tend
to relapse even after treatments.
Summary
Pulmonary infectious diseases are a major cause of morbidity
and mortality worldwide, thus the utilization of FDG-PET/
CT in conjunction with conventional imaging techniques can
yield early diagnosis and optimize treatment strategies.
Throughout this paper, we have highlighted the added clini-
cal value of FDG-PET/CT for diagnosis, elucidating acute
pulmonary/extra-pulmonary manifestations, and tracking
treatment effectiveness. FDG-PET/CT imaging allows for a
highly sensitive approach to imaging; thus, it has utility in
recognizing disease early and guiding medical management.
While usually not a first line imaging modality, FDG-PET/CT
can be a useful adjunct to traditional imaging techniques to
help reduce disease burden and provide vital information at
the molecular level. In addition, FDG-PET/CT imaging is in
alignment with medicine’s shift to a more patient oriented
approach.93 Nuclear imaging has the advantage of allowing
histological mapping and a personalized method of
treatment, but further research is necessary to fully explore
and validate the effectiveness of FDG-PET/CT imaging as a
stand-alone modality in the setting of infectious diseases.
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