374 research outputs found

    A Sensitivity Analysis for Quality Measures of Quantitative Association Rules

    Get PDF
    There exist several fitness function proposals based on a combination of weighted objectives to optimize the discovery of association rules. Nevertheless, some differences in the measures used to assess the quality of association rules could be obtained according to the values of such weights. Therefore, in such proposals it is very important the user’s decision in order to specify the weights or coefficients of the optimized objectives. Thus, this work presents an analysis on the sensitivity of several quality measures when the weights included in the fitness function of the existing QARGA algorithm are modified. Finally, a comparative analysis of the results obtained according to the weights setup is provided.MICYT TIN2011-28956-C02-00Junta de Andalucía P11-TIC-752

    Study of Nonlinear Periodic Optical System

    Get PDF
    We give a brief review of some results of our study on one-dimensional shallow nonlinear Bragg grating with nonlinear modulation and deep nonlinear Bragg grating

    Superconductivity and hybrid soft modes in TiSe2_2

    Get PDF
    The competition between superconductivity and other ground states of solids is one of the challenging topics in condensed matter physics. Apart from high-temperature superconductors [1,2] this interplay also plays a central role in the layered transition-metal dichalcogenides, where superconductivity is stabilized by suppressing charge-density-wave order to zero temperature by intercalation [3] or applied pressure [4-7]. 1T-TiSe2_2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cux_xTiSe2_2 and pressurized 1T-TiSe2_2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. We argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. These results indicate that 1T-TiSe2_2 under pressure is close to the elusive state of the excitonic insulator

    Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite

    Full text link
    Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.Comment: 30 pages, 11 figure

    Dose-Response Curve of Chromosome Aberrations in Human Lymphocytes Induced by Gamma-Rays

    Get PDF
    Chromosome aberration is a biomarker to predict the level of cell damage caused by exposure to ionizing radiation on human body. Dicentric chromosome is a specific chromosome aberration caused by ionizing radiation and is used as a gold standard biodosimetry of individuals over exposed to ionizing radiation.In radiation accident the dicentric assays has been applied as biological dosimetry to estimate  radiation absorbed dose and also to confirm the radiation dose received to radiation workers.The purpose of this study was to generate a dose response curve of chromosome aberration (dicentric) in human lymphocyte inducedbygamma radiation. Peripheral blood samplesfrom three non smoking healthy volunteers aged between 25-48 years old with informed consent were irradiated with dose between 0.1-4.0Gy and a control using gamma teletherapy source. The culture procedure was conducted following the IAEA standard procedures with slight modifications. Analysis of dose-response curves used was LQ model Y = a + αD + βD2. The result showed that α and β values of the curve obtained were 0.018± 0.006 and 0.013 ± 0.002,respectively. Dose response calibration curve for dicentric chromosome aberrations in human lymphocytes induced by gamma-radiation fitted to linear quadratic model. In order to apply the dose response curve of chromosome aberration disentric for biodosimetry, this standar curve still need to be validatedReceived: 8 November 2013; Revised: 27 December 2013; Accepted: 31 December 201

    Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI

    Full text link
    Inelastic neutron measurements of the high-temperature lattice excitations in NaI show that in thermal equilibrium at 555 K an intrinsic mode, localized in three dimensions, occurs at a single frequency near the center of the spectral phonon gap, polarized along [111]. At higher temperatures the intrinsic localized mode gains intensity. Higher energy inelastic neutron and x-ray scattering measurements on a room-temperature NaI crystal indicate that the creation energy of the ground state of the intrinsic localized mode is 299 meV.Comment: 17 pages, 5 figures Revised version; final versio
    corecore