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Abstract- We give a brief review of some results of our study on one-dimensional shallow
nonlinear Bragg grating with nonlinear modulation and deep nonlinear Bragg grating.

I. INTRODUCTION

In the last two decades, one has witnessed dramatic advances in photonic
technology and its applications to modern communication and information processing,
superseding to a large extent, the once dominant role of conventional microelectronics
technology. The rapidly raising dcmand on communication speed and capacity has further
pointed to the necd of all optical tcchnology for the realization of communication system
operating beyond l0 Gbps for each carrier channel. An answer to this challenge is the
development of optically controlled photonic devices or integrated optics. Such devices
must opcrate on the basis of nonlinear optical effcct such as the Intensity Dependcnce
Refractive Index (IDRI) effect, described by the expression fl = ilo 1 n2l for thc total
refractive index r, where z9 and n2 are the linear and nonlinear refractive indices
respectively and / is the l ight intensity.

One of the most important classes of optical devices is charactcrized by optical
periodic structure consisting of two alternating die lectric media as illustrated in Fig. l.
This basic periodic system can serve as a grating or waveguidc systcm depending on thc
direction of l ight propagation. When light is i l luminated in the x ory-direction, the sysrem
functions as a multilayer waveguide, and it functions as a grating when illuminated in the
;-direction.
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media ofFig.L Optical periodic stnrcture consisting of rwo alternating dielectric
refractive indices no and 16 with periodicity A .
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An important feature of linear grating system is the presence of frequency band-
gap, meaning that light with certain frequency lying in the band-gap cannot propagate
through the system. The existence of a band-gap offers many useful applications of
grating-assisted optical devices. A simple example is the optical filter as illustrated in
Fig. (2a). Another example is the Add-drop channel device made by asymmetric graring
coupler as i l lustrated in Fig. (2b), []. A component (2,) of the l ight having three

different wavelengths (1"t,1r,23) will be reflected by the grating, coupled to the
waveguide and transmitted out through the drop channel. Likewise a light with another
wavelength (,to ) can be added through the add-channel and henceforth coupled to the
grating resulting in an outgoing l ight consisting ofone different component (l.r,S.r.l.o)
in the output channel.
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Fig.2. Optical devices (a) Filter (b) Add-drop Channel

The working principles of grating illustrated in fig. 2 can be operated in the passive
or active mode. The incorporation of nonlinearity element such as IDRI effect in the
device will allow it to function as an active device, with the light intensity playing as a
control parameter. In this paper we shall stress our discussion on grating structure with
optical Kerr media exhibitine IDRI cffect.

2. GENERAL FORMULATION

We start our discussion about the nonlinear optical periodic systems by
considering the following one-dimensional Helmholtz equation:

#" ,rl*(')r=o

where po = aolc is the free space wave number. The total refractive index n is define as

follows. Assuming ns(r)r2Q) .. , l(t), *e shall write:

( l )

,(r)= ,s(')+ nr(' lnl ' (2)
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The periodic variation of the linear and nonlinear refractive indices along z-dircction are
expanded in the following Fourier series:

,u'!)=n,., + )a;j\) exp(i^Gr). (3)
meZ*0

Where G=2rl/t, which satisfies the Bragg condition G=2f0, n' is the average of

refractive indices and At('') the m-th Fourier component of refractive index contrast.
Here, we assume that the electric field E(z) can also be written in terms of Fourier series:

E = 
)g(2' '+r) exp(p(2'*') r)* 

"., 
(4)

neZ

where p(2' '+t) =(Z^*t)p is the propagation constant of the (22+l)-th mode of the

conesponding field E(2'*l), which satisfies the SVEA with respcct to z and t, and
implies that the corresponding first order derivative 0Eldz is regarded as small but finite
quantity, e. We assume further, as in ref. [2], the existencc of dominant forward and

backward waves amplitudes E(l) sn6 p(-t) at the wave numbcr p. Substituting equarion

(3) and (4) into equation (l) and denoting E(l) Uy,l anO E(-l) by B, we arrive at the
following approximate coupled equations of the dominant fields:

-, ! * 5, B + +5 rlaf * zlefla + 6 3 A + u ̂blul' *1a1')e + 6 o 82 7 + 5,E A2 = 0, (5b)

where the coefficients d,'s are given as follows:

a, = (p' - pt ri!4 deh.rning parameter,
6 2  a  n t .

a, *[6;J'l + Y ^nJ-"')a;l'")'1
"'*[- 'o ' k,, a^.'1'- ' 1'
6o t tiltt ,

5s q. Ni:2) .

i !+dre*ar f ie f  *z la l ' ] , t+638 +o,b ln f  * ;a ; ' ]a  +6oAzE +a,7a2=0,  (5a)

(6a)

(6b)

(6c)

(6d)

(6e)

As mentioned in the introduction, the existence of band gap is generally expected
in linear grating. Due to its relevance to the ensuing discussion, this linear band gap will
be briefly described and parameterizcd. To this end, let us consider the linear part of
equation (5):
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AA
i = + 5 t A + 6 3 8 = 0 ,

cz

AB- , ; * 6 1 8 + 5 j A = 0 .

Taking the plane wave solutions forl and 8 as given by:

[ , ] )  ( tu \  , *

Ir,,l 
= 
l'r,,,l"

one is readily led to the following expression for r :

(8)

(7a)

(7b)

(  l0 )

( r2b )

( l  l a )

( l  l b )

(e)

clear ly , thel inearbandgapischaracter izedbytheparameters d1 and r l  wi tht i  <61' .

It is also straightforward to prove that the coupled equations (5) incorporate the

conservation law:

la1' -lalz =c

where C is a constant. The case of C = 0 or zero energy flow condition is the focus of

our study. This condition implies that,{ and I should be written as follows:

,t(,\= 1Q)exp(,/(.)),
r(')= 7(')e*p(- iQG)),

where the amplitude function /'(z) and phase functio" QQ) are real functions.

Substituting equation (l l) into cquations (5) will lead us to the following coupled

equations:

!  = u,  +352.12 +d,  cos(zp)+ 460. /2 cos(24)+ 6r1 '2 cos(+S) '  ( l2a)
dz

{  = ar 7 , ,n12Q)+250/ 3 sin(24\+6r12 sin(ap).
(z

The corresponding Lagrangian for these equations is given by:

t=. f2 
#-u, t '  

' .Lurro -5rJ '2.or(24)-  23ola cos(2g)- Iurr^ cos(+p) '  l t r r

Using the standard Legendre transformation we found the corresponding Hamiltonian as:

I  ^  \  .  7  ^  1  t  . \

H(!= .  O)= 5, 1 
2 + !  5,  1 'o n 5 t  J '  .ol ; (24)* z5 o 1 

a cos(24) * 
ru t  I  

o co'(ap),  1 tal
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satisffing the canonical equations:

ao aH
, =  * '

af2 =_au
Az A0
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(  l 5 )

( l 8a )

( r8b )

( l 8 c )

( r 8 d )

t , 2 , 3 ,

It is readily proved that Hamiltonian (14) is also a conserved quantity i.e dH ldz = 0 and

frence A(7-2 ,O)= n,where fi is a real constant. For a certain i and using equation (14),

we can elimin rte l'(z) from equation ( I 2a) and obtained a first order differential equation

of QQ) as follows:

n m r r r

Y = t lJ(za,t * atd, )cos(+/) + (td,d, + 32h5 o)cor(zp) * +61 + 261 + 24h 6, (t 6)
A z  2 "

We can therefore find the solutions of coupled equations (12) simply by solving
equation ( l6), and determine 7 (z) from equation ( l4).

The characteristics ofthe solution can be best clucidated by first idcntifying all the

lixed points (f ' ,O\ of the Hamiltonian given by equation (14) according to the cguations

[3]:

#= r(,,,/)(, ' ,,a)=0, ff=etv,,o)r,r)=o (r7)

To each fixed points determined by equations (17) and specified by certain j2

and f, one obtains the corresponding valucs ofi from cquation (14). Therc are four
t - -  \

d is t incr  f ixed points V, ' ,d , ) ,  i= | ,2 ,3,  4,  corresponding to four  d i f ferent  va lues of  f t

l isted below:

h r=o '

, (a, + 6,, )?

"= - f i a r *uond ) '
, (a, - a,)'
t , a -  -" '  z( ta,  -  46r -  d5 )  

'

,  2516s  +  3516!  -  460164 -  5?6,,o=@'

It should be noted that a physical solution must satisff the condition i,' >0, i =

4.
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The characteristic variations of P and Q with respect to f2 and / in the close

vicinity of a certain fixed point can be found by solving the following equation:

( t 9 )

obtained by Taylor expanding P and Q around the fixed points. The solutions of these

equations for each i will be of the form exp(rt,r). where 2, is the eigenvalue of the

corresponding operator:

evaluated ar rhe corresponding fixcd points l/, '  ,0,) A ktcalized physical solution can

only be found in concuffence with thc existcnce of a saddle points specified by the

condition 1: >0 .

3. DEEP NONLINEAR BRAGG GRATING

A deep nonlinear Bragg grating is a Bragg grating system in which its refractive

index contrast is comparable to their average, Lnf n x 7, where 7 is a small but f inite

quanriry. The dominant f ields are governed by equations (5) with the coefficients ,r 's are

given by equations (6). The influences of Fourier component of n9 corresponding to the

non-dorninant modes are incorporated in the coefflcient d3 as indicated by the presencc

of second term in equation (6c). In this model, the coefficient d2 may havc the same

order with doand d, by design. The coefficients dr, doand d5 are generally cornplex

quantit ies but they are chosen to be real quantit ies in this study. Vanishing do and dr wil l

lead us to the equations of conventional shallow nonlinear Bragg grating with uniform

nonlinearity [4].
In principle, we can study the quantitative behavior of thc solutions of cquations (12)

by anaiyzingthe phase portrait of ff given by equation (14) in a Cartesian coordinates

defined by the following transformation:

f  
2  =  12  +y2 ,  cu r : (4 )=  

" ' / ( . ' * . u t ) ,  
s l n2 (p )=  , t  lG ' *  v ' ) '  ( 21 )

Accordingly, Hamiltonian can be expressed in terms of Cartesian coordinate as follows:

f*f".u)tn
\a ' ) \a I '  ao)

( aP aP)

,  - la f '  ao l
" ' - l  aQ aa I '

ttr ao)
(20)

II(x,.v) =4(" *,ut)* 
]a,(,t 

*.ttl * a,(" -.u')* z ar(,' - t ')*f,d,('o -o'".ut *,"0)' Q2)
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In the case of h=\, th€ existence of localized solution with double hump gap soliton

solutions ( di . rrz ) has already been known for some time [3]. It was pointed out in ref.

[3] however that the double hump gap solitons are allowed only in the case of negative
detuning (dr <0). In our study, we found that even for the case of positive detuning

(dr >0), the double hump gap solitons also exist as i l lustrated in fig.(3a). We note that

those two cases are of different shapes and intensities, and occurring at diffcrcnt phase
(0 )

? l

\
\r

Fig.3. Doubte hump solitons with coefficient set 62 = l, 6t = 3, da = 9.75, ds = 2.5 for

(a) positive detuning dr = I (b) negative detuning dt = - I

For the other non-vanishing Hamiltonians thr,ht,fta), equations (5) does not

admits any localized solutions with vanishing tail. Nevertheless, in-gap and out-gap
localized solutions with background known as dark and anti-dark soliton are allowed.
Remarkably, contrary to the shallow grating case, due to the presence of da and d5

terms in the deep nonlinear Bragg grating has allowed us to find the in-gap dark and anti-
dark solitons in addition to the out-gap dark and anti-dark solitons.

Instead of investigating the case of h = hz,l, which has been work out previously

[5], we choose to focus on the cases for h=ho.lnfig.4 we give two il lustrations of out-

gap dark soliton anti-dark soliton and the corresponding phase portrait for h=ha and

ds = 0 (equal thickness of altemating layer). It is clear from both figures that for a set of

coefficients, dark and anti-dark solitons exists in a complementary trajectory sections of
an ellipse, denoted by the solid bold lines are the trajectories of corresponding solutions.
These solid bold l ines connecting two interscction points which are actually the unstable
points. The circular arcs in between correspond to the constant solutions. In addition to
the out-gap soliton solutions, the in-gap dark soliton is also exist as illustrated in fig.5
along with its conesponding phase portrait. For the case of dr = O, we only found the

dark soliton solutions since thc only trajectorics connecting the two unstable points are
inside the circle.
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Fig.4. Out-gap (a) dark and (b) anti-dark soliton with coefficients set
6 r  = 1 , 6 2  = - 1 , 6 r  = 0 . 7 5 , 6 q  = - 0 . 7 , 5 s  = 0

I ' i9 .5.  ln-gap dark sol i ton wi th cocl f ic ients setd l  = l ,d ,  = -1,5,  =3,6q = -3,  d,  = 6

ln the case 5r * 0, the circles in the phase portraits presented in fig.4 and 5 are

distorted into ellipses including in addition to the in-gap dark soliton, the anti-dark soliton
as well. This situation is illustrated in fig.6. These in-gap dark and anti-dark solitons are
unique for deep nonlinear Bragg grating, but they have never been reportcd before.

Fig .6 .  So l i ton  w i th  coef f i c ien ts  se t  d ;  =1 ,62=- l , t l  =3 ,60=-3  (a )  d ,  = -1  ;o ,

dark soliton (b) t5 = I for anti-dark soliton.
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Complete classifications and detailed explicit expressions of dark and anti-dark
solitons in deep nonlinear Bragg grating can be found in ref.[6].

4. SHALLOW NONLINEAR BRAGG GRATING
WITH NONLINEAR MODULATION

In contrast to the case of deep nonlinear Bragg grating, where we assumed that the
refractive indices contrast are comparablc to their average, in the casc of shallow
nonlinear Bragg grating with nonlinear modulation, the ratio between these two quantities
Molfro and Ln2fn, are both smaller than 7 in the deep grating. We can assume

therefore that the electric field f(z) in this case can simply written as follows:

E(z\= 1(')"*p(i&)+ a(z)exp(- ig) (20)

wherc ,4 and B are the forward and backward propagating field envelopcs rcspcctivcly,
with p denoting the single mode wave number. Differing from the conventional shallow
nonlinear Bragg grating, we consider here the system, which operates with optical wave

having field intensity lOl2 large enough to enhance the IDRI effect, so that the nonlinear

modulation effect becomes significant. In other words, we shall keep working with the
equation (5) and retaining the da and 55 terms which where neglected in the
conventional case [4].

Specializing to the single mode solution of equation (20), the d, coefficient given

by equation (6c) reduces to d, cc Ais while the other coefficients remain unchanged.
While this equation can be formally treated in thc same manner as the previous case, the
solutions found are basically the same as those found in the conventional shallow
nonlinear Bragg grating. The presence of da and 6, does affect the width and height of

the localized solutions. A complctc and comprchcnsive discussion on this casc can bc
found in ref. [7].

Although the equations for both deep nonlinear Bragg grating and shallow
nonlinear Bragg grating with nonlinear modulation are the same, but, the order of thcir
coefficients are differcnt, so, as a consequenc€s, not all solutions admitted in dcep
nonlincar Bragg grating are valid for the shallow case.

5. CONCLUSIONS

The existence of in-gap dark and anti-dark solitons and double hump gap soliton
solutiorrs in decp nonlinear Bragg grating has been demonstrated for the first time by
using the phase plane analysis. These solutions are unique for decp nonlinear Bragg
grating and cannot be found in a conventional shallow nonlinear Bragg grating, or the
system with large IDRI enhancement.
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