35 research outputs found

    Resonance bifurcations of robust heteroclinic networks

    Full text link
    Robust heteroclinic cycles are known to change stability in resonance bifurcations, which occur when an algebraic condition on the eigenvalues of the system is satisfied and which typically result in the creation or destruction of a long-period periodic orbit. Resonance bifurcations for heteroclinic networks are more complicated because different subcycles in the network can undergo resonance at different parameter values, but have, until now, not been systematically studied. In this article we present the first investigation of resonance bifurcations in heteroclinic networks. Specifically, we study two heteroclinic networks in R4\R^4 and consider the dynamics that occurs as various subcycles in each network change stability. The two cases are distinguished by whether or not one of the equilibria in the network has real or complex contracting eigenvalues. We construct two-dimensional Poincare return maps and use these to investigate the dynamics of trajectories near the network. At least one equilibrium solution in each network has a two-dimensional unstable manifold, and we use the technique developed in [18] to keep track of all trajectories within these manifolds. In the case with real eigenvalues, we show that the asymptotically stable network loses stability first when one of two distinguished cycles in the network goes through resonance and two or six periodic orbits appear. In the complex case, we show that an infinite number of stable and unstable periodic orbits are created at resonance, and these may coexist with a chaotic attractor. There is a further resonance, for which the eigenvalue combination is a property of the entire network, after which the periodic orbits which originated from the individual resonances may interact. We illustrate some of our results with a numerical example.Comment: 46 pages, 20 figures. Supplementary material (two animated gifs) can be found on http://www.maths.leeds.ac.uk/~alastair/papers/KPR_res_net_abs.htm

    Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock

    Full text link
    The well-known game of Rock--Paper--Scissors can be used as a simple model of competition between three species. When modelled in continuous time using differential equations, the resulting system contains a heteroclinic cycle between the three equilibrium solutions representing the existence of only a single species. The game can be extended in a symmetric fashion by the addition of two further strategies (`Lizard' and `Spock'): now each strategy is dominant over two of the remaining four strategies, and is dominated by the remaining two. The differential equation model contains a set of coupled heteroclinic cycles forming a heteroclinic network. In this paper we carefully consider the dynamics near this heteroclinic network. We are able to identify regions of parameter space in which arbitrarily long periodic sequences of visits are made to the neighbourhoods of the equilibria, which form a complicated pattern in parameter space.Comment: Submitted to Nonlinearit

    Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory

    Get PDF
    Copyright © 2004 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physica D, Vol 194, Issues 1-2, 2004, DOI:10.1016/j.physd.2004.02.002We consider a model of a Hopf bifurcation interacting as a codimension 2 bifurcation with a saddle-node on a limit cycle, motivated by a low-order model for magnetic activity in a stellar dynamo. This model consists of coupled interactions between a saddle-node and two Hopf bifurcations, where the saddle-node bifurcation is assumed to have global reinjection of trajectories. The model can produce chaotic behaviour within each of a pair of invariant subspaces, and also it can show attractors that are stuck-on to both of the invariant subspaces. We investigate the detailed intermittent dynamics for such an attractor, investigating the effect of breaking the symmetry between the two Hopf bifurcations, and observing that it can appear via blowout bifurcations from the invariant subspaces. We give a simple Markov chain model for the two-state intermittent dynamics that reproduces the time spent close to the invariant subspaces and the switching between the different possible invariant subspaces; this clarifes the observation that the proportion of time spent near the different subspaces depends on the average residence time and also on the probabilities of switching between the possible subspaces

    Rectangle--triangle soft-matter quasicrystals with hexagonal symmetry

    Full text link
    Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from e.g. kites and darts, squares and equilateral triangles, rhombi or shield shaped tiles and can have a variety of different symmetries. However, almost all quasicrystals occurring in soft-matter are of the dodecagonal type. Here, we investigate a class of aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles. We show how to design soft-matter systems of particles interacting via pair potentials containing two length-scales that form aperiodic stable states with two different examples of rectangle--triangle tilings. One of these is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond dodecagonal) quasicrystals can be designed in soft-matter.Comment: 15 pages, 13 figures. Submitted to Physical Review E. The data associated with this paper are openly available from the University of Leeds Data Repository at https://doi.org/10.5518/118

    The effect of symmetry breaking on the dynamics near a structurally stable heteroclinic cycle between equilibria and a periodic orbit

    Get PDF
    The effect of small forced symmetry breaking on the dynamics near a structurally stable heteroclinic cycle connecting two equilibria and a periodic orbit is investigated. This type of system is known to exhibit complicated, possibly chaotic dynamics including irregular switching of sign of various phase space variables, but details of the mechanisms underlying the complicated dynamics have not previously been investigated. We identify global bifurcations that induce the onset of chaotic dynamics and switching near a heteroclinic cycle of this type, and by construction and analysis of approximate return maps, locate the global bifurcations in parameter space. We find there is a threshold in the size of certain symmetry-breaking terms below which there can be no persistent switching. Our results are illustrated by a numerical example

    Three-wave interactions and spatio-temporal chaos

    Get PDF
    Three-wave interactions form the basis of our understanding of many pattern forming systems because they encapsulate the most basic nonlinear interactions. In problems with two comparable length scales, it is possible for two waves of the shorter wavelength to interact with one wave of the longer, as well as for two waves of the longer wavelength to interact with one wave of the shorter. Consideration of both types of three-wave interactions can generically explain the presence of complex patterns and spatio-temporal chaos. Two length scales arise naturally in the Faraday wave experiment with multi-frequency forcing, and our results enable some previously unexplained experimental observations of spatio-temporal chaos to be interpreted in a new light. Our predictions are illustrated with numerical simulations of a model partial differential equation.Comment: 4 pages, 3 figures, revised versio

    Snaking without subcriticality: grain boundaries as non-topological defects

    Full text link
    Non-topological defects such as grain boundaries abound in pattern forming systems, arising from local variations of pattern properties such as amplitude, wavelength, orientation, etc. We introduce the idea of treating such non-topological defects as spatially localised structures that are embedded in a background pattern, instead of treating them in an amplitude-phase decomposition. Using the two-dimensional quadratic-cubic Swift--Hohenberg equation as an example we obtain fully nonlinear equilibria that contain grain boundaries which are closed curves containing multiple penta-hepta defects separating regions of hexagons with different orientations. These states arise from local orientation mismatch between two stable hexagon patterns, one of which forms the localised grain and the other its background, and do not require a subcritical bifurcation connecting them. Multiple robust isolas that span a wide range of parameters are obtained even in the absence of a unique Maxwell point, underlining the importance of retaining pinning when analysing patterns with defects, an effect omitted from the amplitude-phase description.Comment: 16 pages, 12 figures and 2 movies in mp4 forma

    Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance

    Get PDF
    There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behavior leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is however greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modeled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterized by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterize a fluctuation-driven antimicrobial resistance eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments.Comment: 19+7 pages, 4+1 figures. Simulation data and codes for all figures are electronically available from the University of Leeds Data Repository. DOI: https://doi.org/10.5518/136

    Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase

    Get PDF
    Systems of soft-core particles interacting via a two-scale potential are studied. The potential is responsible for peaks in the structure factor of the liquid state at two different but comparable length scales and a similar bimodal structure is evident in the dispersion relation. Dynamical density functional theory in two dimensions is used to identify two unusual states of this system: a crystal-liquid state, in which the majority of the particles are located on lattice sites but a minority remains free and so behaves like a liquid, and a 12-fold quasicrystalline state. Both are present even for deeply quenched liquids and are found in a regime in which the liquid is unstable with respect to modulations on the smaller scale only. As a result, the system initially evolves towards a small-scale crystal state; this state is not a minimum of the free energy, however, and so the system subsequently attempts to reorganize to generate the lower-energy larger-scale crystals. This dynamical process generates a disordered state with quasicrystalline domains and takes place even when this large scale is linearly stable, i.e., it is a nonlinear process. With controlled initial conditions, a perfect quasicrystal can form. The results are corroborated using Brownian dynamics simulations
    corecore