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Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase
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Systems of soft-core particles interacting via a two-scale potential are studied. The potential is responsible for
peaks in the structure factor of the liquid state at two different but comparable length scales and a similar bimodal
structure is evident in the dispersion relation. Dynamical density functional theory in two dimensions is used to
identify two unusual states of this system: a crystal-liquid state, in which the majority of the particles are located
on lattice sites but a minority remains free and so behaves like a liquid, and a 12-fold quasicrystalline state.
Both are present even for deeply quenched liquids and are found in a regime in which the liquid is unstable with
respect to modulations on the smaller scale only. As a result, the system initially evolves towards a small-scale
crystal state; this state is not a minimum of the free energy, however, and so the system subsequently attempts to
reorganize to generate the lower-energy larger-scale crystals. This dynamical process generates a disordered state
with quasicrystalline domains and takes place even when this large scale is linearly stable, i.e., it is a nonlinear
process. With controlled initial conditions, a perfect quasicrystal can form. The results are corroborated using
Brownian dynamics simulations.
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I. INTRODUCTION

In hard condensed matter systems, the structure of the
crystalline states that are formed is largely determined by
the strength of the bonds between the atoms or molecules
in the system, the dependence of the bonds on the orientation
of the particles, and the packing of the particles. In general,
thermal fluctuations and entropy are less important, unless
one considers a system near the melting transition. In contrast,
entropy and temperature can be all-important in determining
the structure of soft-matter systems.

For polymers in solution, the interactions between pairs
of chains depend on a delicate balance between energy and
entropy [1]. When the solvent is good, the polymer chains
form an open structure and interactions between pairs of
polymers are largely repulsive and entropic in origin. On
the other hand, when the solvent is not as good, the polymer
exhibits a tendency to collapse. In a good solvent, the strength
of the repulsion depends on how branched the polymer is.
As a result, the form of the effective interaction between
polymers can be tailored and controlled via the polymer
architecture. In star polymers, for example, the effective inter-
action potential is determined by the number of arms on each
star [1–3].

The effective interaction between soft polymeric macro-
molecules is also soft. Since the centers of mass need not
coincide with any particular monomer, the effective interaction
potential between the centers of mass can actually be finite for
all values of the separation distance r between the centers.
In this paper we discuss the structure, phase behavior, and
dynamics of a two-dimensional (2D) model system of such
soft-core particles.

The model that we study consists of soft particles that have
a core plus corona (or shoulder) architecture. The particles
interact via the following pair potential:

V (r) = εe−(r/R)8 + εae−(r/Rs )8
, (1)

where R is the diameter of the cores of the particles and Rs > R

is the diameter of the corona (or shoulder) of the particles. In
addition to the two length scales present in the potential, there
are two energy scales: the energy penalty for a pair of particle
cores to overlap is ε(1 + a) and the energy penalty for just the
coronas to overlap is εa, where a is a dimensionless parameter
that determines the shoulder repulsion strength.

The particular form of the pair potential in Eq. (1)
arises from considering the effective interaction between the
centers of mass of certain dendrimers or star polymers. For
dendrimers, this potential applies if the inner generations of
monomers are of one kind (hydrophobic, say), while the outer
generations are of another kind (hydrophilic, say). Similarly,
if a star polymer is made of diblock copolymers, then with
a suitable choice of the block length ratio, the effective
interaction potential between the centers of mass is expected
to be of the form in Eq. (1) [4,5].

In Fig. 1, see Ref. [6], we display the phase diagram for
a system with temperature kBT /ε = 1 and Rs/R = 1.855.
The figure shows the (a,ρ0R

2) plane, where ρ0 = 〈N〉/L2

and 〈N〉 is the average number of particles in area L2. This
phase diagram is determined using density functional theory
(DFT). This theory, together with other results reported in
[6], is elaborated below. We see that at low densities ρ0 the
particles form a liquid state. However, as the density increases,
the particles overlap and then freeze to form one of two
different crystalline states. The crystals are unusual: they are
of the so-called cluster-crystal variety [5,7–13], related to the
fact that the particles have a soft core. In the cluster-crystal
multiple particles occupy each lattice site. When the parameter
a = 0, the system reduces to particles interacting via a simple
soft potential with one length scale and one energy scale.
This is the generalized exponential model with exponent
n = 8, or the GEM-8 model fluid [7–14]. In two dimensions,
at the temperatures relevant here, this model exhibits just
one hexagonal crystal phase, with lattice spacing ∼R that
is approximately constant with increasing density (note that
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FIG. 1. (Color online) Phase diagram in the (a,ρ0R
2) plane,

where ρ0 is the average density. The system exhibits three phases:
a liquid and two crystalline phases. Crystal A is hexagonal, with
a large lattice spacing, while crystal B, which is also hexagonal,
has a smaller lattice spacing. The short-dashed blue line is the
linear instability threshold (spinodal) for the uniform liquid. The
long-dashed green horizontal line is where the two principal peaks in
the static structure factor S(k) have the same height, while the pink
dotted line terminating in a circle is the locus where the two peaks in
the dispersion relation ω(k) have equal height. The circle marks the
point where the smaller k peak disappears.

at very low temperatures, a series of isostructural phase
transitions is expected [12,13]). Similarly, when a � 1 the
contribution from the core of the potential becomes negligible
and the fluid is again approximately a GEM-8 system, but
now the particles have the larger diameter Rs and a stronger
repulsion energy. Thus, for large a, the system forms a
hexagonal crystal with lattice spacing ∼Rs . We henceforth
refer to this larger lattice spacing crystal as the crystal A phase
and the smaller lattice spacing crystal as the crystal B phase.

When the difference Rs − R is small, one can pass smoothly
from one crystal phase to the other as a is varied (i.e., there is
only one crystalline phase). However, when the difference is
larger, as in the case displayed in Fig. 1, crystal A and crystal
B are two distinct phases separated by a phase transition at
a ∼ O(1).1 Indeed, many of the interesting properties of the
present model described below all occur in the regime where
a ∼ O(1), because they stem from the competition between
the two different length scales R and Rs and the two different
energy scales (1 + a)ε and aε.

Two of the most striking properties of this system are that
(i) when quenched to certain regions of the phase diagram,
where a ∼ O(1), the system can sometimes freeze to form
states with quasicrystalline order, and (ii) on examining in
detail the crystal A phase, again when a ∼ O(1), we find that
there is a high proportion of mobile particles in the system,

1We estimate that crystal A and crystal B are distinct phases when
Rs/R � 1.6, since the ratio Rs/R needs to be greater than this value
for there to be a point on the linear instability threshold line where
there are two modes that are unstable (i.e., the point in Fig. 1 where
the dotted and dashed lines meet).

which is why we refer to this phase as a crystal-liquid state.
It is crystalline, because the majority of the particles in the
system is frozen onto a regular hexagonal lattice. However, a
minority is liquid, in the sense that they move throughout the
system. We find that the proportion of mobile particles in the
system can be as high as 7%.

The quasicrystals (QCs) formed by the present system are a
local equilibrium state of the system, i.e., they are not the global
minimum free energy state. They are found at state points in
the portion of the phase diagram where the thermodynamic
equilibrium phase is the crystal-liquid A state. The QCs are
formed by a particular dynamic mechanism when the system
is quenched to certain regions of the phase diagram.

In order to find parameter values at which QCs might
be favored, we have invoked understanding developed from
analyzing mode interactions in the Faraday wave experiment,
in which a tray of liquid is subjected to vertical vibrations of
sufficient amplitude that standing waves form on the surface.
This system exhibits quasipatterns (the fluid dynamical analog
of quasicrystals), as discovered in the early 1990s [15,16],
and two different mechanisms for their formation have been
identified (see [17] for a more detailed discussion). Briefly,
patterns with Q-fold symmetry are expressed as sums of
modes with Q wave vectors spaced at equal angles and weakly
nonlinear theory is used to compute how waves with different
orientations affect each other. One mechanism relies on strong
self-coupling to downplay the effect of waves with different
orientations [18–20], so permitting 8-, 10-, 12-, 14-, 16-, 18-,
20-fold, or higher quasipatterns [17]. The second mechanism
invokes nonlinear coupling between the primary waves with
secondary weakly damped (or weakly excited) waves such
that primary waves with wave vectors separated by a certain
angle determined by the ratio of the primary to secondary wave
number are favored [16,21–27]. We invoke here this second
mechanism, as done in [28,29], and select the length scale ratio
for our investigation to be Rs/R = 1.855 (Sec. III) in order
that the ratio of the primary to secondary wave numbers is
2 cos(15◦) = 1.932, so favoring dodecagonal quasicrystals.

In fact, the mechanism for QC formation that we actually
observe differs from either of the two mechanisms described
above. The QCs form when the uniform liquid is linearly
unstable against density fluctuations with a small wavelength
that is close to that of the lattice spacing of the crystal B
phase but stable with respect to wavelengths comparable to
that of crystal A. Thus, in the initial stages after a quench the
system appears to be forming the crystal B phase. However,
the minimum free energy structure is actually the larger lattice
spacing crystal A phase. In the subsequent nonlinear evolution,
the system seeks to form this larger lattice-spacing phase.
However, being already patterned with the shorter length scale
from the early stage linear dynamics, the system cannot always
form a perfect crystal A and often forms a state with a mixture
of both the short and long length scales that sometimes turns
out to have quasicrystalline ordering, i.e., the Fourier transform
of the density distribution reveals the presence of 12-fold
ordering. As one might expect from such a mechanism, the
structure that is formed contains defects. However, by carefully
controlling the wave numbers of the density modulations prior
to the quench, the system can be induced to form a perfect
quasicrystal.

012324-2



SOFT-CORE PARTICLES FREEZING TO FORM A . . . PHYSICAL REVIEW E 92, 012324 (2015)

Understanding the mechanisms by which soft-matter QCs
can form is becoming increasingly important. The possibility
of designing soft-matter quasicrystals that self-assemble has
generated considerable interest at a fundamental level, leading
to a burst of experimental and theoretical activity [30–34].
Self-assembled soft-matter quasicrystals are of interest for a
number of reasons, not least because they promise to provide
a route to manufacturing materials and coatings with novel
optical or electronic properties arising as a consequence of
their high degree of rotation symmetry [35–37].

Although our focus is on polymeric soft-matter QCs, we
should also mention that there are other (colloidal) soft-matter
systems that form QCs [34,38–42]. These also have pair
potentials involving more than one length scale, but owing
to the particles having a hard core, the local structure of
these materials differs from that described below, as does the
resulting phase behavior.

This paper is structured as follows. In Sec. II we describe
the DFT and dynamical DFT that we use to determine the
structures formed by the system. In Sec. III we discuss the
properties of the uniform liquid state, presenting results for
the radial distribution function g(r), the static structure factor
S(k), and the dispersion relation ω(k). We then present results
relating to the solid states that are formed, focusing on the
crystal-liquid state in Sec. IV and on QC formation in Sec. V.
This section includes a discussion of our numerical results and
their relation to other mechanisms of QC formation from the
literature that are relevant to soft-matter systems. The paper
concludes in Sec. VI with a few concluding remarks.

II. THEORY FOR THE SYSTEM

We use DFT [43–46] to determine the structure, thermo-
dynamics, and phase behavior of the system. To describe the
dynamics of the system when it is out of equilibrium, we use
dynamical density functional theory (DDFT) [47–50]. The
thermodynamic grand potential of the system is a functional
of the one-body density distribution ρ(r) of the particles

�[ρ(r)] = F [ρ(r)] +
∫

drρ(r)[�(r) − μ], (2)

where μ is the chemical potential, �(r) is the external
potential, and F [ρ] is the intrinsic Helmholtz free energy of
the system, which is composed of two contributions

F [ρ(r)] = kBT

∫
drρ(r)[ln(ρ(r)�2) − 1] + Fex[ρ(r)]. (3)

The first term is the ideal-gas contribution, with kB the
Boltzmann constant, T the temperature, and � the thermal de
Broglie wavelength. The second term Fex is the excess (beyond
ideal gas) portion describing the contribution to the free energy
stemming from the interactions among the particles. The
equilibrium density profile of the system at a given state point
(μ,T ) is that which minimizes �[ρ], i.e., which satisfies the
equation

δ�[ρ(r)]

δρ(r)
= 0. (4)

For systems of soft-core particles such as those we consider
here, the following rather simple mean-field approximation is

remarkably accurate [1,51,52]:

Fex[ρ(r)] = 1

2

∫
dr

∫
dr′ρ(r)V (|r − r′|)ρ(r′). (5)

This functional generates the following simple random-phase
approximation (RPA) for the pair direct correlation function:

c(2)(|r − r′|) ≡ −β
δ2Fex[ρ(r)]

δρ(r)δρ(r′)
= −βV (|r − r′|), (6)

where β = (kBT )−1.
To calculate the density profile of the system at a given

state point (μ,T ), we discretize the density profile on a square
Cartesian grid and use fast Fourier transforms to evaluate the
convolution integrals in Fex[ρ]. We employ standard Picard
iteration [53] to solve the Euler-Lagrange equation obtained
from Eqs. (2)–(4),

ln[ρ(r)�2] − c(1)(r) + β�(r) − βμ = 0, (7)

where

c(1)(r) ≡ −β
δFex[ρ(r)]

δρ(r)
(8)

is the one-body direct correlation function. For the RPA
functional in Eq. (5) this gives

c(1)(r) = −
∫

dr′βV (|r − r′|)ρ(r′). (9)

Equation (7) can be rearranged to obtain the following
expression for the density profile:

ρ(r) = ρ0 exp{−β�(r) + c(1)(r) − c(1)[ρ0]}, (10)

where c(1)[ρ0] denotes the value of c(1) when Eq. (9) is
evaluated for the uniform density profile ρ(r) = ρ0. We
note the result ρ0 = �−2 exp(βμ + c(1)[ρ0]) showing that the
average density in the system ρ0 is determined by the chemical
potential μ or vice versa.

Picard iteration of Eq. (10) corresponds to substituting the
density profile at step j , ρ(j )(r), into the right-hand side of
Eq. (10) to obtain ρ

(j )
rhs (r). To stabilize the iteration process

these two density profiles at step j are mixed,

ρ(j+1)(r) = αρ
(j )
rhs (r) + (1 − α)ρ(j )(r), (11)

to obtain a new approximation for the density at step j + 1.
This equation is then iterated until convergence is achieved.
The value of the mixing parameter α varies, depending on the
state point and the type of density profile to be calculated, but
typically is in the range 0.001 < α � 0.1.

In the present study we generate the initial guess for the
density profile in several different ways. One choice is to
use the density profile obtained from solving at a different
state point. Another way is to start with the density profile
ρ(r) = ρ0 + ξ (r), where ξ (r) is a small amplitude randomly
fluctuating field. When the uniform fluid is linearly unstable
(see below in Sec. II C), this initial guess may converge to
the density profile of the crystal. However, this method often
results in density profiles containing defects. The chance of
these forming is much less in smaller systems and so the
density profile for a larger portion of a perfect crystal needs
to be built up from the density profile obtained from a smaller
system.
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With this procedure the average density in the system

ρ̄ = 1

L2

∫
drρ(r) (12)

equals ρ0 only when the system is in the uniform liquid state.
For the crystal, ρ̄ 	= ρ0. This is because by iterating (10),
we actually select the value of the chemical potential μ.
The density ρ0 is the density of the uniform liquid for this
value of μ and ρ̄ is therefore the density of the crystal
corresponding to this μ value. In calculations where we wish
to specify the average density to be ρ0, we add an additional
step to the Picard iteration, where at each step j , after the
mixing step given by Eq. (11), we renormalize the density
profile, whereby we replace ρ(j+1)(r) with fρ(j+1)(r), where
f = ρ0/[ 1

L2

∫
drρ(j+1)(r)] [cf. Eq. (12)]. In all our discussions

below, we do not distinguish between ρ̄ and ρ0. We use ρ0 to
denote the average density in all phases, but it should be borne
in mind that when this refers to a crystal phase, we mean the
average density as defined in Eq. (12).

As presented, Picard iteration is simply a numerical algo-
rithm for solving the Euler-Lagrange equation and therefore
for finding density profiles that minimize the free energy.
However, as shown in Sec. V, Picard iteration generates a series
of density profiles that are often a fairly good approximation
to the real dynamics as determined by DDFT (see Sec. II B),
i.e., the index j can be thought of as if it were proportional to
the time t . In these cases we have used the fictitious dynamics
generated by Picard iteration in place of the slower DDFT to
survey the behavior at different points in the phase diagram.

In Fig. 2 we display typical density profiles obtained from
DFT when the temperature kBT /ε = 1 and Rs/R = 1.855.
The phase diagram for this system is displayed in Fig. 1. In
the top panel of Fig. 2 we display the density profile at an
interface between coexisting crystal A and crystal B phases,
for a = 0.75. Since the lattice spacings of the two crystal
structures are incommensurate, defects are necessarily present
along the interface. In the bottom panel of Fig. 2 we display
the density profile across an interface between the uniform
density liquid on the right and the small lattice spacing crystal
B phase on the left, for a = 0.5.

In the phase diagram displayed in Fig. 1 the shaded (red)
regions indicate coexistence between two different phases.
The boundaries of these regions correspond to the densities
of the two phases at coexistence; recall that for two phases to
coexist the chemical potential μ, the pressure p ≡ −�/L2,
and the temperature T must be equal in the two phases. There
is also a triple point, where all three phases coexist. Note
that in order to determine the minimum grand potential �

one must also minimize with respect to the computational
domain size L. Actually, for hexagonal crystals one should
calculate the density on a domain of size

√
3L × L. However,

on comparing results on such domains with those obtained
on a square domain, we have confirmed that as long as the
(square) domain is sufficiently large that it contains many unit
cells, the slight strain energy contribution to the free energy
is negligible. Most of the calculations presented here are for a
system of size L = 25.6R with periodic boundary conditions,
where the finite-size effects for the regular crystal structures
are negligible. For QC structures, there are particular domain
sizes (e.g., 8, 30, and 112 times the smaller scale) that allow

FIG. 2. (Color online) The top panel shows the density profile in
the (x/R,y/R) plane near an interface between coexisting crystal A
and crystal B phases, for a = 0.75. Because the lattice spacings of
the two crystal structures are not commensurate, defects along the
interface are necessarily present. The bottom panel shows the density
profile between the uniform liquid and the [1,1] interface of the crystal
B phase, for a = 0.5.

for accurate approximation to 12-fold QC structure [17]. Our
results are for domains of size 30. We remark further on this
point in Sec. V.

A. Liquid structure factor

To characterize the structure of the liquid state, two
quantities, the real space radial distribution function g(r)
and the reciprocal space static structure factor S(k), are very
useful [46]. The static structure factor in the liquid phase is
given by the relation S(k) = [1 − ρ0ĉ(k)]−1, where ĉ(k) is the
Fourier transform of c(2)(r). Thus the RPA for the structure
factor in the uniform liquid phase is

S(k) = 1

1 + ρ0βV̂ (k)
. (13)

To determine the radial distribution function g(r) one can insert
the simple RPA (6) into the Ornstein-Zernike equation [46].
However, we choose instead to calculate g(r) using the Percus
test particle method [46,54]. This gives a more accurate
approximation for g(r) and also illustrates better the true
accuracy of the DFT that we use. The test particle method
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corresponds to fixing one of the particles at the origin, so
that �(r) = V (r) in Eq. (2), and then calculating the density
distribution of the remaining particles in the presence of this
fixed particle. The radial distribution function is obtained
from the resulting density profile via Eq. (4): g(r) = ρ(r)/ρ0.
In Ref. [54] results from this RPA test particle theory
were compared with the more sophisticated hypernetted-chain
(HNC) theory for a very similar 2D soft-core system. The
agreement between the two is rather good, which gives us
confidence that the simple RPA DFT is accurate. We present
typical results for g(r) and S(k) in Sec. III below.

B. Dynamics: Time evolution of the density

In addition to the equilibrium fluid structure, we also de-
termine the nonequilibrium fluid dynamics. Since we consider
soft polymeric blobs in solution, an appropriate approximation
is to assume that the centers of mass of the particles move via
Brownian motion, i.e., via overdamped stochastic equations of
motion

ṙi = −�∇U (rN,t) + �X(t), (14)

where i = 1, . . . ,N is an index that labels all the different
particles in the system, whose set of position coordinates we
denote by rN ≡ {r1,r2, . . . ,rN }. The mobility coefficient � =
βD, where D is the diffusion coefficient, while X(t) denotes
the random force on the particles due to the solvent thermal
motion. We assume in the standard way that X(t) is a Gaussian
random variable [47–50]. The potential energy of the system
is

U (rN,t) =
N∑

i=1

�(ri) +
∑
j>i

N∑
i=1

V (|ri − rj |). (15)

For a system of interacting particles with equations of motion
given by (14), we can use DDFT [47–50] to determine the
time evolution of the fluid nonequilibrium density distribution
ρ(r,t). In DDFT the dynamics is governed by

∂ρ(r,t)
∂t

= �∇ ·
[
ρ(r,t)∇ δ�[ρ(r,t)]

δρ(r,t)

]
, (16)

a result that follows on making the approximation that the
nonequilibrium fluid two-point density correlation function is
the same as that in the equilibrium fluid with the same one-body
density distribution. Equation (16) is thus an approxima-
tion [47–50], but for soft-core fluids, previous good agreement
with the results from Brownian dynamics (BD) computer
simulations [i.e., from solving repeatedly Eq. (14) and then
averaging over the different realizations of the noise] gives us
confidence that Eq. (16) provides a good approximation to the
exact dynamics.

C. Dispersion relation

An important quantity for understanding the behavior of the
system is the dispersion relation ω(k). This relation determines
the rate at which density fluctuations in the uniform liquid
grow (ω > 0) or decay (ω < 0) over time. Consider a uniform
liquid with density ρ0, with a superposed small amplitude
perturbation ρ̃(r,t) ≡ ρ(r,t) − ρ0. Equation (16) shows that

the perturbation evolves according to

∂ρ̃

∂t
= Lρ̃ + O(ρ̃2), (17)

where L ≡ D∇2 − Dρ0∇2c(2)⊗ is a linear operator and ⊗
denotes a convolution, i.e., c(2) ⊗ ρ̃ ≡ ∫

dr′c(2)(r − r′)ρ̃(r′).
To obtain this result one must make a functional Taylor
expansion of Fex[ρ] [49,54,55]. Linearizing Eq. (17) and
decomposing ρ̃ into a sum of different Fourier modes,

ρ̃(r,t) =
∑

k

ρ̂ke
ik·r+ω(k)t , k ≡ |k|, (18)

leads to the dispersion relation [49,54,55]

ω(k) = −Dk2[1 − ρ0ĉ(k)]. (19)

On combining this result with the RPA (6) we obtain
ω(k) = −Dk2[1 + ρ0βV̂ (k)], a result closely connected to
the structure factor S(k) defined in Eq. (13). This connection
applies in the case of a stable uniform liquid.

The liquid state is described as being linearly stable if
ω(k) < 0 for all wave numbers k and linearly unstable when
ω(k) > 0 for some wave number k. The latter situation arises
for state points deep inside the parameter regime where
the crystal is the equilibrium phase. The linear instability
threshold is defined as the locus in the phase diagram where
dω(k)

dk
|k=kc

= 0 together with ω(k = kc) = 0, i.e., the locus
where the maximum growth rate is zero. The location of
this threshold is displayed in Fig. 1 as the blue short-dashed
line.

III. STRUCTURE OF THE LIQUID

In this section we present some typical results for the radial
distribution function g(r), the static structure factor S(k), and
the dispersion relation ω(k) to illustrate the changes in the
structure of the uniform liquid as the average density ρ0 and
the shoulder height parameter a are varied.

In Fig. 3 we display a series of results for fixed a = 0.8,
as the density of the fluid is increased from zero to the value
ρ0R

2 = 2.7, which for a = 0.8 is the density of the liquid
at coexistence with the crystal B phase. In the top panel we
display the radial distribution function. In the limit ρ0 → 0 this
is given by g(r) = exp[−βV (r)], which exhibits a correlation
hole for small r due the particles seeking to avoid overlaps.
However, since the repulsion strength for full overlap at this
temperature is βV (r = 0) = βε(1 + a) = 1.8, which is not
that large, g(r ≈ 0) is positive, reflecting the fact that there is a
nonzero probability for particles to overlap completely, even at
low densities. As the density ρ0 increases, the value of g(r ≈ 0)
also increases, reflecting the fact that particles are forced to
overlap more often. Furthermore, oscillations develop in the
tail of g(r), at larger r . For particles with a hard core, we
would normally ascribe this behavior to packing effects due
to core exclusion. However, in the present system this is a
largely energetic effect: as the density is increased, the overall
energy is lowered if some particles overlap with each other
completely, thereby avoiding more expensive partial overlap
with many particles simultaneously, although the degree to
which this occurs depends on the balance between energetic
and entropic effects. This behavior is also reflected in the
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FIG. 3. Correlation functions characterizing the liquid phase for
increasing density ρ0 as indicated in the key, for fixed a = 0.8. The
top panel shows the radial distribution function g(r), the middle panel
the static structure factor S(k), and the bottom panel the dispersion
relation ω(k).

fact that for ρ0R
2 > 1, g(r ≈ 0) > 1. This value of g(r ≈

0) continues to increase as the density is increased. For the
case ρ0R

2 = 2.7 we see that g(r) is highly structured, with
a pronounced peak at r = 0 indicating multiple overlaps. In
fact, it is this growing tendency to form clusters that drives the
freezing into a cluster crystal when the density ρ0R

2 � 2.7.

In the middle panel of Fig. 3 we display the structure factor
S(k) obtained via Eq. (13) at the same density values. We see
that as the density is increased, S(k) exhibits two peaks. These
reflect the correlations in the system with two characteristic
length scales R and Rs and so the two peaks in S(k) are
(roughly) at the wave numbers ≈2π/Rs and ≈2π/R. The fact
that the peak at ≈2π/R is larger reflects the fact that for this
value of a the particle core repulsions dominate the repulsions
due to the shoulder. As a result, for this value of a (a = 0.8)
the system freezes to form the small lattice spacing crystal B
phase.

In the lower panel of Fig. 3 we display the dispersion
relation ω(k) at the same series of state points. Except for the
limiting case of low density, ω(k) also exhibits two peaks,
reflecting the peaks in S(k). For all the results displayed
ω(k) � 0 for all k from which we infer that the liquid is in
fact linearly stable at these densities. Indeed, at these densities
the uniform liquid is the global minimum free energy state.
However, for ρ0R

2 � 2.7, the global minimum corresponds
to that of the hexagonal crystal. As the density is further
increased (not displayed), the larger k peak in ω(k) continues
to grow in height and when ρ0R

2 ≈ 3.2 the peak growth
rate ω(k = kc) = 0, indicating that the uniform liquid is now
marginally unstable with respect to perturbations with wave
number kc ≈ 2π/R. The resulting linear instability threshold
(spinodal) line is displayed as the blue short-dashed line in
Fig. 1.

In Fig. 4 we display g(r) (top), S(k) (middle), and ω(k)
(bottom) at fixed density ρ0R

2 = 1.2, as the shoulder height
parameter a is varied. For small values of a, we see that g(r)
exhibits a peak just beyond r = R, since this is the effective
diameter of the particles. However, as a increases, increasing
the shoulder height, this peak decreases in height while another
peak develops just beyond r = Rs , reflecting the growing
dominance of the shoulder in determining the correlations in
the liquid. The liquid with density ρ0R

2 = 1.2 and a = 1.3 is
at phase coexistence with the crystal A phase. The behavior
observed in g(r) is of course reflected in the structure factor
shown in the middle panel of Fig. 4. Specifically, for small a

there is a single peak in S(k), at kR ≈ 5.5. As the shoulder
height a increases, this peak moves slightly towards larger k

and a second peak develops at kR ≈ 3, i.e., at a value of k that
is a little below the value 2π/Rs . The latter reflects the growing
importance of the length scale Rs in the particle correlations
in the liquid. As a increases further the peak at smaller k

overtakes the larger k peak. The two peaks in S(k) have equal
height at a = 1.067, irrespective of the fluid density. The locus
of this point is displayed as the green long-dashed line in
Fig. 1. The lower panel of Fig. 4, which displays the dispersion
relation ω(k), also shows the development and growth of a peak
at kR ≈ 3. Increasing a beyond the values displayed in this
figure shows that this peak continues to grow in height until
ω(k) > 0 for kR ≈ 3, indicating the uniform fluid becomes
linearly unstable. In Fig. 1 we display the locus along which
the two principal peaks in ω(k) are of equal height using a
pink dotted line. Along this line the growth (or decay) rates
for density fluctuations with these two wave numbers are the
same.

In Fig. 5 we display the dispersion relation ω(k) for fixed
ρ0R

2 = 3.5 and various values of a. For the case a = 0.4 there
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FIG. 4. Correlation functions characterizing the liquid phase for
a range of values of a as indicated in the key, for fixed ρ0R

2 = 1.2.
The top panel shows the radial distribution function g(r), the middle
panel the static structure factor S(k), and bottom panel the dispersion
relation ω(k).

is one main peak in ω(k), with its maximum close to zero,
indicating that this state point is close to but slightly outside
the linear instability threshold. As a increases this peak grows
in height and also shifts to slightly larger wave numbers, as
the uniform liquid becomes linearly unstable. At the same
time a second peak starts to develop at kR ≈ 3 and becomes
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FIG. 5. Dispersion relation ω(k) for fixed ρ0R
2 = 3.5 and various

values of a, as indicated in the key.

the dominant peak for a > 1.4. Since ω(k) determines the
growth rate of density fluctuations in the unstable liquid, the
figure reveals a transition between the fastest growing modes
at small a to those at large a; this transition takes place along
the pink dotted line in Fig. 1.

This can also be seen in Fig. 6, which displays the dispersion
relation along a diagonal path in the phase diagram passing
through the point (ρ0R

2,a) = (2.95,1.067), corresponding to
the cusp in the blue short-dashed marginal stability threshold
line in Fig. 1. At this point two modes with wave number ratio
k2/k1 = 1.932 are marginally unstable.

IV. CRYSTAL-LIQUID STATE

We now turn our attention to the density profiles in the
crystal state. As illustrated in Fig. 2, at first sight the crystal
A and crystal B phases appear to be standard examples
of hexagonally ordered cluster crystals. However, closer
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FIG. 6. Dispersion relation ω(k) at a series of points along a
diagonal path in the phase diagram passing through the point at
ρ0R

2 = 2.95 and a = 1.067 at which the two modes k1R = 3.12
and k2R = 6.03 are simultaneously marginally unstable. Note that
k2/k1 = 1.932.
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FIG. 7. (Color online) Density profile in the top panel of Fig. 2
displayed in terms of the logarithm of the density ln[ρ(r)R2] plotted
in the (x/R,y/R) plane. This representation allows one to see the fine
structure of the density profile away from the principal peaks. Note
in particular the honeycomb structure surrounding each of the peaks
in the crystal A phase on the left of the interface.

inspection of the density profile of the crystal A phase reveals
that this is not the case, at least at state points near its
coexistence with the crystal B phase (i.e., at smaller a values).
In Fig. 7 we display the density profile in the vicinity of the
interface between the crystal A and crystal B phases shown in
Fig. 2, but this time in terms of the logarithm of the density
ln[ρ(r)R2]. This allows one to see the fine structure in the
density profile in the regions of space between the main
peaks of the hexagonal lattice. Here we see an unbroken
honeycomblike network of density that percolates throughout
the crystal A portion of the system, indicating that the particles
that contribute to this portion of the density profile are free
to move throughout the system. To confirm the existence
of this striking structure, we calculate, using both DFT and
BD computer simulations, the density profile for a system
confined within a square confining potential �(r) with hard
walls at x = 0,10R and y = 0,10R so that �(x,y) = 0 for
(0,0) < (x,y) < (10R,10R) and �(x,y) = ∞ otherwise. The
top left panel in Fig. 8 shows the density profile obtained
from the BD simulations with N = 600 particles, βε = 1,
and a = 0.8, i.e., the average density in the box is ρ0R

2 = 6.
The BD result is obtained simply by evolving in time the
particles according to Eq. (14) and then averaging over their
positions to calculate the density profile. The top right panel in
Fig. 8 shows the corresponding density profile from DFT. The
remarkable agreement between the two confirms the validity
of the DFT approximation for this system. The bottom panel
in Fig. 8 shows a snapshot showing a typical configuration
of the particles in the BD simulation. The particle positions
are indicated using open circles. Although the majority of
the particles is located on lattice sites, a significant minority
remains mobile, with the particles free to move in the density
lanes between lattice sites. The system thus consists of two
dynamically distinct populations. This is not observed in other
pattern-forming 2D systems, such as those in Refs. [56–59],
where the dynamics of all the particles are identical.
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FIG. 8. (Color online) The top panels show ln[ρ(r)R2] in the
(x/R,y/R) plane for a system of N = 600 particles with (a,ρ0R

2) =
(0.8,6) confined in a square region of side L = 10R obtained from BD
simulations (top left) and DFT (top right). The system forms crystal
A with a density profile consisting of an array of peaks surrounded by
a connected network within which the particles are free to move; this
is the crystal-liquid state. The bottom panel is a snapshot from the
BD simulation where each particle coordinate is plotted as an open
circle.

In Fig. 9, bottom panel, we display the percentage of mobile
particles in crystal A as a function of the parameter a, for a fixed
value of the chemical potential βμ = 39. This percentage is
obtained by integration over all portions of the density profile
that are a distance 0.65R away from the center of the density
peaks. Particles that contribute to this portion of the density are
defined to be mobile. Figures 9(a)–9(d) display the logarithm
of the density profile corresponding to the points indicated
in the lower panel. We see that as a decreases the fraction
of mobile particles increases from zero, reaching a value of
over 7% at a = 0.75. We terminate the curve at this point
because for a < 0.75 crystal A is no longer the equilibrium
crystal structure. It appears that as a decreases below this
coexistence value, the growing proportion of mobile particles
triggers the formation of the smaller lattice spacing crystal
B phase, whereby the mobile particles freeze to form the
additional peaks of crystal B.

V. FORMATION OF QUASICRYSTALS

The role of resonant triads in the context of minimizing
a free energy with one length scale has long been recog-
nized [60,61]. In particular in three dimensions these triads can
stabilize states with icosahedral symmetry. In two dimensions
the presence of two length scales implies the presence of
two circles of wave vectors in Fourier space and resonant
triads involving wave vectors from these two circles can
also contribute to stability of quasicrystals [26], provided
the interaction coefficients are of the correct sign. With a
radius ratio of the two circles equal to 2 cos(15◦) = 1.932,
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FIG. 9. (Color online) (a)–(d) Plots of ln[ρ(r)R2] in the crystal A
phase in the (x/R,y/R) plane for fixed βμ = 39 at the state points:
(a) (a,ρ0R

2) = (0.75,4.1), (b) (0.9,3.8), (c) (1.05,3.5), and (d)
(1.3,3.1). The bottom figure shows a plot of the fraction of mobile
particles that are in the liquid part of the density surrounding the
density peaks. For a < 0.75 crystal A is no longer the thermodynamic
equilibrium crystal structure and is replaced by crystal B.

equilateral triads, 30◦ triads and 150◦ triads involving two
vectors from one circle and one vector from the other, increase
the number of possible triads and so the potential contribution
to the free energy. This configuration leads to dodecagonal
quasicrystals; with other radius ratios, the situation can be
yet more complicated [25]. In fact, arguments based on the
contribution to the free energy from resonant triads only,
important though these are, overlook the potential importance
of higher-order harmonics, whose coefficients may become
arbitrarily large owing to the problem of small divisors that
inevitably appears whenever quasiperiodicity and nonlinearity
occur together [62]. Thus a truncation of the theory at cubic
order, a procedure widely used in the literature, remains to be
properly justified, although Ref. [63] goes some way towards
resolving the small divisor issue.

The mechanism identified below for stabilizing QCs in the
present system also involves two length scales, but differs
qualitatively from that just described (see also [28,29]). In our
case the system first forms the small length scale crystal phase.
It is only when this phase is almost fully formed (i.e., when
the dynamics is far into the nonlinear regime) that the longer

length scale starts to appear, leading to the formation of the
QC (see Figs. 10 and 11). Thus, what we observe is in fact a
hitherto unseen mechanism for the formation of QCs.

The scenario for the formation of QCs described in [28] (i)
requires the system to be just inside the linear instability line
(i.e., ρ is restricted to a small range beyond ρλ, the value at the
linear instability line) and (ii) relies on the simultaneous linear
growth of two distinct wave numbers as in [26]. In this scenario
the role of the higher-order interactions (i.e., of nonlinearity) is
to stabilize the two length scale (QC) structures formed from
the two linearly growing scales [28].

We contrast this scenario with that described here for a
uniform liquid quenched to a region above the coexistence of
the two crystal phases but below the pink dotted line in Fig. 1.
In this regime the large k peak dominates and small length scale
density fluctuations grow rapidly (Fig. 10) as described by the
dispersion relation in Fig. 12(a). In this regime the system
behaves as if it were going to form crystal B. However, the true
minimum of the free energy corresponds to the larger length
scale crystal and this length scale is linearly stable [Fig. 12(a)].
As a result, as the growing short-scale density fluctuations
reach the nonlinear regime, the system seeks to go to the longer
length scale structure but the smaller length scale imprinted
from the linear growth regime leads to frustration. We observe
this type of behavior well away from onset, i.e., deep inside the
linear instability threshold, in contrast to the scenario in [28]. In
Fig. 10 we display the resulting time evolution of the density
profile as the system forms QCs. Since only one mode is
unstable, the formation of the QCs that we find can only occur
via the nonlinear mechanism described here.

In Fig. 11 we display DDFT results showing the forma-
tion of a QC structure at a = 1.067 and ρ0R

2 = 3.5.2 The
dispersion relation corresponding to this state point is shown
in Fig. 12(b). We see that in this case the larger-wavelength
mode is no longer stable, although its growth rate is weak
compared to that of the short-wavelength mode. As a result,
the system first forms the pure small length scale crystal (see,
e.g., the middle panel of the top row of Fig. 11 corresponding
to t∗ = t/τB = 2, where τB ≡ βR2/� is the Brownian time
scale). However, over time, starting from a grain boundary,
the system evolves a QC structure much as occurs at state
point a = 0.8 and ρ0R

2 = 3.5. In both cases this happens
when the system is well away from the linear regime, in
contrast to the weakly nonlinear QC mechanism proposed in
Refs. [28,29]. Indeed, for a = 1.067 the linear instability line
is at ρ0R

2 = 2.95, implying that this state point corresponds,
like a = 0.8 and ρ0R

2 = 3.5, to quite a deep quench. As a
result, both snapshot series show that the linear growth regime
introduces only one length scale, that of the small length scale
crystal B phase, despite the presence of the weakly unstable
larger length scale in Fig. 11. Figure 11 also confirms that the
DDFT dynamics and the fictitious dynamics obtained from
Picard iteration in Fig. 10 are indeed qualitatively very similar.

As explained above, our work shows that quasicrystalline
structures can form even when only one of the two scales
introduced by our choice of the potential is unstable; the
instability forms nonlinear structures with this one scale only

2Figure 2 of Ref. [6] displays a QC formed at (a,ρ0R
2) = (0.76,3.5).
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FIG. 10. (Color online) Snapshots of ln[ρ(r)R2] in the (x/R,y/R) plane obtained via Picard iteration for a = 0.8 and ρ0R
2 = 3.5, revealing

the evolution towards the equilibrium state for the same state point as the results displayed in the upper panel of Fig. 13. The dispersion relation
at this state point is displayed in Fig. 12(a). The panels along the top row, from left to right, correspond to times t = 30, 32, and 35 and along
the bottom row to t = 40, 50, and 200. Note that the system first forms the small length scale crystal (at time t ≈ 30). It then tries to form the
longer length scale crystal. However, due to the small length scale already imprinted on the system, it cannot form a perfect large length scale
crystal and ends up forming a disordered system with domains of QC ordering. The Picard iteration used to generate these figures does not
locally conserve particle number (although it does conserve the total density in the system; see Sec. II), but is much faster than the full DDFT
and gives qualitatively similar results; compare this figure with Fig. 11, which is calculated with DDFT.

FIG. 11. (Color online) Snapshots of ln[ρ(r)R2] in the (x/R,y/R) plane obtained from DDFT, for a = 1.067 and ρ0R
2 = 3.5. The

dispersion relation at this state point is displayed in Fig. 12(b). The panels along the top row, from left to right, correspond to times
t/τB ≡ t∗ = 1, 2, and 5 and along the bottom row to t∗ = 10, 20, and 40, where τB ≡ βR2/� is the Brownian time scale. Note that the system
first forms a small length scale crystal (t∗ = 2). It then tries to form the longer length scale crystal, initiated from a grain boundary; see panels
for t∗ = 5 and 10. However, because of the small length scale already imprinted on it, the system cannot form a perfect long length scale crystal
and ends up forming a disordered system with domains of QC ordering; see the final stationary profile at t∗ = 40.
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FIG. 12. Dispersion relation at the state point a = 0.8 and
ρ0R

2 = 3.5 (top, corresponding to Fig. 10) and a = 1.067 and
ρ0R

2 = 3.5 (bottom, corresponding to Fig. 11). In both cases, QCs
form at these state points. In the upper panel (Fig. 10) only one mode
is unstable, corresponding to the smaller length scale crystal B. In
the lower panel (Fig. 11) two modes are unstable, but the growth rate
for the smaller length scale crystal B is much larger than that for the
larger length scale crystal A.

but because these do not correspond to the global minimum
of the free energy that occurs at a distinct scale, the system
attempts to shift the structure to the thermodynamically
preferred scale. This process leads to frustration that is
responsible for the formation of the QC state. This is a
qualitatively distinct mechanism of QC formation from that
advocated in Refs. [28,29], which requires that both scales are
weakly unstable. As a result, the latter theory is only capable
of describing QCs that have very small amplitude. In contrast,
our quasicrystalline states are present quite far from the onset
of instability and form from a periodic state via the nonlinear
time-dependent process described above.

The calculation of the values of a and Rs/R used above to
home in on the parameter region where QCs might be observed
was described in Ref. [28] as well as in earlier work [18]. Once
the approximate parameter regime has been identified, the
details of what happens depend on the values of a and Rs/R.
However, the QCs that we observe are always metastable with
respect to the periodic crystal. By this we mean that they

FIG. 13. (Color online) The left panels show plots of ln[ρ(r)R2]
in the (x/R,y/R) plane obtained from DFT for (a,ρ0R

2) = (0.8,3.5).
The right panels are the corresponding Fourier transforms. The latter
exhibit 12-fold symmetry, which is indicative of QC ordering. The
top density profile is obtained from random initial conditions, while
the lower profile was formed starting from an initial density profile
having QC symmetry.

correspond to a local minimum of the free energy, but not to
the global minimum (Fig. 14). Thus the density profiles in
Fig. 13 are indeed possible ground states (i.e., local minima),
but not the ground state (global minimum): the free energy of
the state in the top panel in Fig. 13 is slightly higher than that
of the lower panel, but both are higher than that of the crystal
A phase, which is the global minimum for this state point.
As a increases beyond the range displayed in Fig. 14, the QC
free energy increases more rapidly than that of the crystal A
phase, i.e., the trend revealed in Fig. 14 continues and the two
free energies do not approach one another again. In particular,
the QC free energy is far above that of the crystal A phase
at a = 1.067. This may also be so for the QCs obtained in
Refs. [28,64,65]. In contrast, very recently [66] it has been
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FIG. 14. (Color online) Grand potential density as a function of
a for fixed βμ = 39 for the two different crystal structures and also
the QC solution displayed in Fig. 13. Near a = 0.75 there is a point
where all three have almost the same value of the grand potential,
but the QC solution is never the global minimum (see the inset). The
crystal A phase is of crystal-liquid type throughout the range of a

shown.
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FIG. 15. (Color online) Plots of ln[ρ(r)R2] in the (x/R,y/R) plane for density profiles obtained when starting from the perfect QC
displayed on the bottom left of Fig. 13, which has Rs/R = 1.855, and then following the solution as Rs is varied, for fixed μ and domain
size. When Rs is decreased, the QC remains stable until Rs/R = 1.77, at which point the QC profile becomes linearly unstable and the Picard
iteration then falls on to the crystal A profile (which contains defects), displayed above left. When Rs is instead increased, the perfect QC
solutions become unstable at Rs/R = 2.03, where the iteration switches to a different branch of QC solutions (above middle), before this new
QC state becomes unstable at Rs/R = 2.19 and evolves to the crystal B branch of solutions displayed above right.

shown that for the Lifshitz-Petrich free energy [26], QCs are
indeed the global free energy minimum for certain parameter
values.

In Fig. 13 we display both the QC density profiles and
the corresponding Fourier transforms. Both exhibit 12-fold
ordering. In the upper case, there is significant disorder in
the system, which is not surprising given the dynamical
mechanism we observe for QC formation. However, it is
possible to facilitate a more ordered final state by choosing (for
example) a periodic domain 30 times larger than the shorter of
the two length scales to allow for a circle of 12 vectors that are
29.98◦ apart and whose lengths differ by 0.05% [17]. Starting
from an initial condition with these 12 modes set to a small
amplitude, we observe that the system easily forms a perfect
example of a QC (Fig. 13, lower panels).

In Fig. 15 we display density profiles obtained by taking
this perfect QC and then following the solution as the value of
Rs is changed. We find that QCs remain linearly stable in the
Picard iteration for 1.77 < Rs/R < 2.18. If Rs is decreased to
Rs/R = 1.77, the QC solution at this point becomes unstable
and the Picard iteration leaves this solution and falls onto
a crystal A profile (which contains defects), displayed in
the left-hand panel of Fig. 15. If instead Rs is increased,
at Rs/R = 2.03 the Picard iteration falls off the branch of
solutions corresponding to the perfect QC at the bottom left of
Fig. 13 and settles on a different branch of QC solutions, which
is displayed in the middle panel of Fig. 15. Further increasing
Rs , this QC becomes linearly unstable at Rs/R = 2.18 and the
Picard iteration then goes to the crystal B profile displayed in
the right-hand panel of Fig. 15.

VI. CONCLUSION

In this paper we have elaborated on the results of Ref. [6]
for a simple model soft-core fluid that exhibits surprisingly
rich phase behavior: two crystalline phases and a fluid phase.
This stems from the fact that the pair potential between the
particles has two length scales R and Rs and two different
energy scales aε and (1 + a)ε. The subtle balance of these
leads to rich structuring and phase behavior. Pair potentials
with these qualities arise as the effective interaction potentials
between polymeric macromolecules. In particular, we believe

that tailoring dendrimers with a core plus shell architecture
should yield particles with effective interaction potentials
akin to those considered here. Of course, the model system
considered here is two dimensional, so to observe the particular
behavior reported here in an experimental system, the particles
must be confined to an interface in order to create an effectively
two-dimensional system. The natural next step to take after the
work described here is to consider systems in three dimensions,
where the phase behavior and the structures observed will be
even richer.

The two most striking aspects of the present model are
(i) the formation of the crystal-liquid phase, having two
dynamically distinct populations of particles, some that are
confined to the crystal lattice sites and others that are mobile,
residing in a honeycomblike network around the main density
peaks, and (ii) the formation of QCs. This aspect is particularly
interesting because the QC structures form via a mechanism
that is distinct from any of the mechanisms that have been
proposed previously. Namely, QC formation occurs following
a deep quench of the uniform liquid to state points where
it is unstable. At these state points, the global minimum of
the free energy corresponds to the large length scale crystal
A phase. However, in the initial linear growth regime after
the quench, a smaller length scale (corresponding to the
small-length crystal B phase) grows the fastest, leading to the
system becoming patterned with the wrong small-wavelength
density modulations. When the system subsequently seeks to
lower its free energy and hence to introduce the longer length
scale, it remains stuck with some ordering on the small length
scale. The final equilibrium structure generally consists of a
mixture of the two length scales and may exhibit QC ordering,
i.e., the Fourier transform may consist of a ring of 12 peaks.
The resulting structure is in fact a local minimum of the free
energy, but not the global minimum. The QCs formed via
such a mechanism are, unsurprisingly, generally disordered,
containing a mixture of domains with 12-fold ordering and
domains of hexagonal ordering, corresponding to one of the
two hexagonal crystal structures.

The results presented here are for just one temperature.
However, the important quantities for determining the phase
behavior of the model are the dimensionless quantities kBT /ε,
a, and Rs/R. Varying these determines the location in the phase
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diagram of the linear instability threshold, the point where both
length scales are marginally unstable, and the ratio k2/k1. In
the limit a = 0, increasing kBT /ε shifts the linear instability
threshold to higher density ρ [54]. Varying the temperature
by a modest amount should leave the behavior of the present
system qualitatively unchanged, merely shifting the regions
where the crystalline phases occur to higher densities.

It is worth connecting the present work with related
work [54,67,68] on the freezing of binary mixtures of particles.
The mixtures considered in Refs. [54,67] also possess two
length scales, owing to the fact that they are a binary mixture
of soft particles of different sizes, and form multiple structures
when a solidification front advances into an unstable uniform
liquid. For a deep enough quench, such a front deposits
behind it density modulations that are also of the wrong
wavelength, thereby frustrating the formation of a well-ordered
correct wavelength equilibrium crystal. In particular, the final
equilibrium structures also contain a high degree of disorder.
In this case, the selection of the wrong wavelength is due
to the dynamical nature of the length scale selection process
via an advancing front: the selected wavelength depends only
on the linearization (17), whereas the global minimum free

energy crystal structure is determined by the full DFT, which is
highly nonlinear. This situation differs from the QC formation
observed in the present work, yet there are similarities: both
systems undergo a linear process that generates modulations
with a length scale that does not correspond to the length
scale of the equilibrium structure, which is determined by
nonlinear processes. This naturally leads to an unanswered
question: what happens when a solidification front advances in
the present system? The front motion will generate a particular
length scale, the linear growth of local density modulations
will produce a slightly different length scale, and nonlinear
interactions will seek to generate a third length scale. We
anticipate that the interplay of such processes will inevitably
lead to highly disordered structures.
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