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There is a pressing need to better understand how microbial populations
respond to antimicrobial drugs, and to find mechanisms to possibly eradicate
antimicrobial-resistant cells. The inactivation of antimicrobials by resistant
microbes can often be viewed as a cooperative behaviour leading to the
coexistence of resistant and sensitive cells in large populations and static
environments. This picture is, however, greatly altered by the fluctuations aris-
ing in volatile environments, in which microbial communities commonly
evolve. Here, we study the eco-evolutionary dynamics of a population consist-
ing of an antimicrobial-resistant strain and microbes sensitive to antimicrobial
drugs in a time-fluctuating environment, modelled by a carrying capacity ran-
domly switching between states of abundance and scarcity. We assume that
antimicrobial resistance (AMR) is a shared public good when the number of
resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is
thus characterised by demographic noise (birth and death events) coupled
to environmental fluctuations which can cause population bottlenecks. By
combining analytical and computational means, we determine the environ-
mental conditions for the long-lived coexistence and fixation of both strains,
and characterise a fluctuation-driven AMR eradication mechanism, where
resistant microbes experience bottlenecks leading to extinction. We also
discuss the possible applications of our findings to laboratory-controlled
experiments.
1. Introduction
Environmental conditions, such as temperature, pH or available resources, end-
lessly change over time and shape the fate of natural populations. For instance,
microorganisms often live in volatile environments where resource abundance
fluctuates between mild and harsh conditions, and regimes of feast alternate
with periods of famine [1–3]. How environmental variability (EV), generally
referring to changes not caused by the organisms themselves (e.g. supply of
abiotic resources), affects species diversity is a subject of intense debate and
research (e.g. [4–13]). Demographic noise (DN) arising from randomness in
birth and death events in finite populations is another source of fluctuations.
DN is negligible in large populations and strong in small ones, where it can
lead to species fixation, when one species takes over the population, or to extinc-
tion, and hence can permanently set the make-up of a community [14–17]. The
dynamics of the population composition (evolutionary dynamics) is often coupled
with that of its size (ecological dynamics) [18], resulting in its eco-evolutionary
dynamics [19–21].

When EV influences the size of a population, it also modulates the DN
strength, leading to a coupling of DN and EV [21–26]. This interdependence
is potentially of great relevance to understand eco-evolutionary dynamics of
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microbial communities. The coupling of DN and EV can lead
to population bottlenecks, where new colonies consisting of
few individuals are prone to fluctuations [27–30], and plays
an important role in the eco-evolutionary dynamics of
antimicrobial resistance (AMR) [31,32].

The rise of AMR is a global threat responsible for millions
of deaths [33]. Understanding how AMR evolves and what
mechanisms can possibly eradicate the resistance to anti-
microbials are therefore questions of great societal relevance
and major scientific challenges. A common mechanism of
AMR involves the production by resistant cells, at a metabolic
cost, of an extra or intracellular enzyme inactivating anti-
microbial drugs [34–36]. When the number of resistant cells
exceeds a certain threshold, there are enough drug-inactivat-
ing enzymes, and the protection against antimicrobial drugs
is shared with sensitive cells that can thus also resist anti-
microbial drugs at no metabolic cost. However, below the
resistant population threshold, only resistant microbes are
protected against the drug (enzyme availability is limited
and it can only inactivate the drug in the vicinity of resistant
cells). AMR can hence be viewed as a thresholded coopera-
tive behaviour where widespread antimicrobial inactivation
is a form of public good. This results in the spread of resistant
microbes below the threshold, while sensitive cells thrive
under high enzymatic concentration (above threshold).
Hence, in static environments and large populations, both
sensitive and resistant strains survive antimicrobial treatment
and coexist in the long run [36–39]. In this work, we show
that this picture can be greatly altered by the joint effect of
demographic and environmental fluctuations, often over-
looked, but ubiquitous in microbial communities that
commonly evolve in volatile environments, where they can
be subject to extreme and sudden changes [27–31,40,41].

Motivated by the problem of the evolution of AMR, here
we study the coupled influence of EV and DN on the eco-
evolutionary dynamics of a population of two species, one
antimicrobial-resistant strain and the other sensitive to anti-
microbials. In our model, we assume that AMR is a
cooperative behaviour above a certain threshold for the
number of resistant microbes, and the microbial community
is subject to environmental fluctuations that can cause popu-
lation bottlenecks. Here, EV involves random switches of the
carrying capacity, causing the population size to fluctuate,
while the antimicrobial input is kept constant. We thus
study how the joint effect of EV and DN affects the fixation
and coexistence properties of both strains, determining
under which environmental conditions either of them prevail
or if they both coexist for extended periods. This allows us to
identify and fully characterise a fluctuation-driven AMR
eradication mechanism, where environmental fluctuations
generate transients that greatly reduce the resistant
population and DN can then lead to the extinction of AMR.

In the next section, we introduce the model and discuss
our methods. We present our results in §3, where we first
describe the main properties of the (in silico) model evolving
under a fluctuating environment, and then study its proper-
ties analytically. In §§3.1–3.3, we analyse the population
dynamics in the large population limit, and then the
model’s fixation properties in static environments. In §3.4,
we characterise the fixation and coexistence of the strains in
fluctuating environments, and discuss in detail the fluctu-
ation-driven eradication of AMR arising in the regime of
intermediate switching. Section 4 is dedicated to the
discussion of the influence of EV on the strains fraction and
abundance (§4.1), and to a review of our modelling assump-
tions (§4.2). Our conclusions are presented in §5. Technical
and computational details are given in the electronic
supplementary material [42].
2. Methods and models
Microbial communities generally evolve in volatile environ-
ments: they are subject to suddenly changing conditions
[40,41], and fluctuations can play an important role in their
evolution [4,5,7,8,10–12,31]. For instance, fluctuating nutri-
ents may be responsible for population bottlenecks leading
to feedback loops and cooperative behaviour [27–30], while
sensitivity to antimicrobials depends on cell density and its
fluctuations [36–39,43]. Here, we study the eco-evolutionary
dynamics of cooperative AMR by investigating how a well-
mixed microbial community evolves under the continued
application of a drug that hinders microbial growth when
the community is subject to fluctuating environments. The
evolutionary dynamics of the microbial community is mod-
elled as a multivariate birth-and-death process [14,44,45],
whereas to model the fluctuating environment we assume
that the population is subject to a time-varying binary
carrying capacity [23,24,46–48].

2.1. Microbial model
We consider well-mixed co-cultures composed of an anti-
microbial-resistant cooperative strain (denoted by R) and a
defector type sensitive to antimicrobials (labelled S), under a
constant input of antimicrobial drug, inspired by a chemostat
laboratory set-up. The population, of total size N, hence con-
sists of NR resistant and NS sensitive microbes, with N=NR +
NS. Note that, since we later introduce EV as switches in
the carrying capacity, the total population will fluctuate accord-
ingly. A frequent mechanism of AMR relies on the production
of an enzyme hydrolysing the antimicrobial drug in their surround-
ings [34–36]. Here, we assume that each R cell produces the
enzyme at a constant rate, regardless of the antimicrobial con-
centration, which is inspired by typical lab experiments, e.g.
with resistance gene-bearing plasmids [36,37]. When the
number of R is high enough, the overall concentration of resist-
ance enzyme in the medium suffices to inactivate the drug for
the entire community: the enzyme hydrolyses the drug and
sets it below the minimum inhibitory concentration (MIC), there-
fore acting as a public good and protecting S as well. This
mechanism can hence lead to AMR as a cooperative behaviour
[34–36], for instance, by means of the β-lactamase resistance
enzyme for the general β-lactam family of antibiotics [49] (see
§4.2 for non-shared resistance mechanisms).

Here, we model this AMR mechanism by assuming that R
acts as a cooperative strain when the number of R cells (proxy
for resistance enzyme concentration) exceeds a fixed
threshold Nth, i.e. R cells are cooperators when NR≥Nth,
while they retain for themselves the benefit of producing
the protecting enzyme when NR <Nth [36–39,43]. The effec-
tive regulation of public good production by means of a
population threshold has been found in a number of
microbial systems (e.g. [27,39,50–52]), and is consistent with
a slower microbial growth cycle with respect to the fast
time scale of enzyme production and dispersion. In this
work, we study the AMR evolution as a form of cooperative
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Figure 1. Microbial community model. (a) Top: when the abundance of R (blue microbes) is below the cooperation threshold Nth, antimicrobial drug hinders the
growth rate of S (red microbes) and R cells have a growth advantage. Bottom: AMR becomes cooperative when the number of R exceeds Nth and these generate
enough resistance enzyme ( public good in green shade) to hydrolyse the antimicrobial drug below the MIC for the whole medium, so that protection against the
drug is shared with S (with green shields). (b) Temporal eco-evolution dynamics of the microbial community for example parameters s = 0.2, a = 0.5, K− = 50,
K+ = 250, ν = 0.2 and δ = 0.6; thick black line shows the sample path of the time-switching carrying capacity K(t), with a cooperation threshold Nth = 30 (blue
line); thick solid lines depict the N→∞ piecewise deterministic (deterministic between two switches of K) process defined by equations (3.2) and (3.3) for the
total microbial population (N, green), number of R (NR = Nx, blue) and number of S (NS = N(1− x), red); noisy lines show an example stochastic realisation of the
full model under the joint effect of demographic and environmental fluctuations. In the absence of DN, R can experience bumps and dips (thick blue line), and tdip
indicates the mean time to reach the bottom of a dip from its inception; see §3.4. In the presence of DN, fluctuations about the dip can lead to the extinction of R
(blue arrow). (c) R fraction x = NR/N for the same sample path of varying environment as in (b); line styles as in (b); the dashed black line shows the stable R
fraction in each environment as K(t), driven by ξ(t), switches in time.
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behaviour under demographic and environmental fluctu-
ations. Assuming fixed-volume fluctuating environments,
the threshold for AMR cooperation is here set in terms of R
abundance (rather than its concentration), see §4.

In our model, R microbes have a constant birth rate inde-
pendent of the biostatic drug hindering microbial growth
[53–55],1 with fitness fR = 1− s, where 0 < s < 1 captures the
extra metabolic cost of constantly generating the resistance
enzyme. The birth rate of S depends on the public good
abundance: when NR <Nth, the enzyme concentration is
low (below cooperation threshold) and the antimicrobial
drug is above the MIC, the S fitness fS is thus lower than
fR, with fS = 1− a, where 1 > a > s and a encodes growth rate
reduction caused by the drug. When NR≥Nth, the R abun-
dance is above the cooperation threshold. This triggers the
AMR cooperative mechanism: the drug is inactivated
(below MIC), and the S birth rate, with fS = 1, is then higher
than that of R, see figure 1a. Denoting by x≡NR/N the
fraction of R in the population, here S fitness is

fS ¼ 1� au [Nth �NR] ¼ 1� au [xth(N)� x],

where θ[z] is the Heaviside step function, defined as θ[z] = 1 if
(z > 0) and θ[z] = 0 otherwise, and xth(N )≡Nth/N is the
fraction of R at the cooperation threshold. The average
population fitness is �f ¼ fRNR=N þ fSNS=N. In this setting,
this population evolves according to the multivariate
birth–death process [16,44,45] defined by the reactions

NR=S �!
Tþ
R=S

NR=S þ 1

and NR=S �!
T�
R=S

NR=S � 1,
ð2:1Þ

occurring with transition rates [21–23,25]

Tþ
R ¼ fR

�f NR ¼ ð1�sÞNR
1�au[Nth�NR]þðau[Nth�NR]�sÞNR=N

, T�
R ¼ N

K NR

and Tþ
S ¼ fS

�f NS ¼ ð1�au[Nth�NR]ÞNS
1�au[Nth�NR]þðau[Nth�NR]�sÞNR=N

, T�
S ¼ N

K NS,

ð2:2Þ

with growth limited by the logistic death rate N/K (so that the
total population N follows the standard logistic dynamics in
the mean field limit; see equation (3.1)), where K is the carrying
capacity that is here assumed to be a time-fluctuating quantity;
see below. Moreover, we have normalised fR/S by the average
fitness �f for mathematical convenience, without loss of general-
ity (see §4.2). This corresponds to the growth rate of each strain
to be given by its fitness relative to the average population’s
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fitness, a common assumption in the context of biological and
evolutionary processes [6,16,56], which allows us to establish a
neat relationship between our multivariate birth–death process
and the classical Moran process. The latter is the reference
birth–death-like process used to model the evolution of ideal-
ised populations of constant total size [14,16,57–59]. The link
with the Moran process enables us to take advantage of its
well-known properties, in particular the exact results for the
fixation probability and mean fixation time [14,16,57,59], to
characterise analytically many features of our eco-evolutionary
model (see §§3.2 and 3.3, and electronic supplementary
material, section D [42]).
 if

J.R.Soc.Interface
20:20230393
2.2. Environmental fluctuations and master equation
In addition to demographic fluctuations stemming from
random birth and death events (see equation (2.1)), we
model EV as sudden changes in the available resources,
such as in cycles of feast and famine [1–3,60]. We implement
this by letting the carrying capacity be a binary time-fluctuat-
ing random variable K(t)∈ {K−, K+}, with K+ > K−, as broadly
used in eco-evolutionary modelling [22–26,32,46–48,61,62].
This allows us to simply model sudden extreme changes in
the population size, particularly the formation of population
bottlenecks [25,27–30,63], providing us with a theoretical
counterpart of commonly used laboratory experimental
chemostat set-ups [63–66]; see §4.2.

For simplicity, we consider that K(t) is driven by the
coloured dichotomous Markov noise (DMN) ξ(t) = {− 1, 1}
that randomly switches between K− and K+. The DMN is
an important example of bounded noise, with finite
correlation time that is easy to simulate accurately (see
electronic supplementary material, section A [42]) and amen-
able to analytical progress, and hence often employed in
modelling evolutionary processes in fluctuating environ-
ments [21–23,25,26,46–48,67]. The dynamics of the DMN is
defined by the simple reaction [46,47,67]

j �! �j, ð2:3Þ
endlessly occurring at rate (1− δξ)ν, where −1 < δ < 1. Here,
we always consider the DMN at stationarity where ξ = ±1
with probability (1 ± δ)/2. The stationary DMN ensemble
average is thus 〈ξ(t)〉≡ ((1 + δ)/2)− ((1− δ)/2) = δ and its
auto-covariance (auto-correlation up to a constant) is
〈ξ(t)ξ(t0)〉 − 〈ξ(t)〉〈ξ(t0)〉 = (1− δ2) e−2ν|t−t

0|, where ν is both
half the inverse of the correlation time and average switching
rate. We thus consider that the binary switching carrying
capacity is [21,23,25,26]

KðtÞ ¼ 1
2
[Kþ þ K� þ jðtÞðKþ � K�Þ], ð2:4Þ

and K(t) thus switches from a state where resources are abun-
dant (K+) to another state where they are scarce (K−) with
rates ν+≡ ν(1− δ) and ν− ≡ ν(1 + δ) according to

K� O
n�

nþ
Kþ:

Environmental statistics can be characterised by the mean
switching rate ν≡ (ν− + ν+)/2 and by δ≡ (ν− − ν+)/(ν− + ν+)
that encodes the environmental switching bias: when δ >
0, on average, more time is spent in the environmental state
ξ = 1 than ξ =−1, and thus K =K+ is more likely to occur than
K =K− (symmetric switching arises when δ = 0). The time-
fluctuating carrying capacity (2.4) modelling environmental fluc-
tuations is responsible for the time-variation of the population
size, and is coupled with the birth-and-death process (2.1) and
(2.2).

The master equation (ME) giving the probability P(NR,
NS, ξ, t) for the population to consist of NR and NS cells in
the environmental state ξ at time t is [44]

@PðNR, NS, j, tÞ
@t

¼ (E�R � 1)[Tþ
R PðNR, NS, j, tÞ]þ (E�S � 1)[Tþ

S PðNR, NS, j, tÞ]
þ (EþR � 1)[T�

R PðNR, NS, j, tÞ]þ (EþS � 1)[T�
S PðNR, NS, j, tÞ]

þ n�jPðNR, NS, � j, tÞ � njPðNR, NS, j, tÞ
ð2:5Þ

where E+R=S are shift operators such that E+R=SfðNR=S, NS=R, tÞ ¼
f ðNR=S + 1, NS=R, tÞ, and the probabilities are set to P(NR, NS,
ξ, t) = 0 whenever NR < 0 or NS < 0. The last line on the right-
hand side of (2.5) accounts for the random environmental
switching; see black line in figure 1b. Since T+

R=S ¼ 0 whenever
NR = 0 or NS = 0, this indicates that there is extinction of R
(NR = 0) and fixation of S (NS =N), or fixation of R (NR =N)
and extinction of S (NS = 0). When one strain fixates and
replaces the other, the population composition no longer
changes while its size continues to fluctuate.2 The multi-
variate ME (2.5) can be simulated exactly using standard
stochastic methods (see electronic supplementary material,
section A [42]), and encodes the eco-evolutionary dynamics
of the model whose main distinctive feature is the coupling
of the population size N and its composition x = NR/N, with DN
coupled to EV; see (2.2) and below.
3. Results
In this section, we analyse how the coupled demographic and
environmental fluctuations shape the evolution of the frac-
tion of R in cooperative AMR [31]. Our main goals are to
establish the conditions under which EV and DN facilitate
the eradication of R and reduce the size of the remaining
pathogenic microbial population (see also §4).
3.1. Coupled environmental and demographic noise
induces regimes of coexistence and dominance

The eco-evolutionary long-lived behaviour of a microbial
community is chiefly captured by: (i) the expected duration
of the strains coexistence (mean coexistence time, MCT, that
here coincides with the unconditional mean fixation time
[16,57]; see electronic supplementary material, section B.2
[42]) and (ii) by the fixation (or extinction) probability of
each strain, i.e. the chance that a single strain eventually
takes over the entire population (or that the strain is fully
replaced by others). These properties have been extensively
studied in populations of constant total size, e.g. in terms
of the Moran process [14,16,44,56,57,59,69], but are far less
known in communities of fluctuating size when DN is
coupled to EV. To gain some insight into the behaviour of
microbial co-cultures under coupled eco-evolutionary
dynamics defined by equation (2.5), we compute in silico
the R fixation probability, denoted by ϕ, and the strains
coexistence probability, labelled by Pcoex, when the external
conditions fluctuate between harsh (K− = 120, scarce
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Figure 2. Eco-evolutionary dynamics in the phase diagram of the joint fixation and coexistence probability. (a–c) Fixation and coexistence joint probability in silico
at a given environmental bias δ and mean switching frequency ν for s = 0.1, a = 0.25, K− = 120 and K+ = 1000 at resistant cooperation thresholds
Nth ¼ 60, 80 and 100; see the discussions in §§3.3 and 4.2, and electronic supplementary material, section D.3 [42] for the behaviour at much larger populations
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optimal regime for the eradication of R; see §3.4. The white asterisks in (b) depict the environmental statistics for each of the bottom panels. (d–f ) Sample paths for
the carrying capacity (K, black), number of R (NR, blue), number of S (NS, red) and fixed cooperation threshold Nth = 80 (dashed blue) for the environmental
parameters (ν, δ) depicted by the corresponding white asterisk in (b). The high environmental switching frequency in ( f ) results in an effectively constant carrying
capacity (K ¼ K, dotted line); see §3.2.
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resources) and mild (K+ = 1000, abundant resources). Here,
Pcoex is defined as the probability that both strains still coexist
for a time exceeding twice the average stationary population
size t > 2〈N〉.3 In our simulations, we consider a wide range of
the switching rate ν and bias δ, with approximately 103–104

realisations for each dynamic environment, and different
values of the cooperation thresholds, with Nth∼ 100. In our
simulations, we respectively use s∼ 0.1–0.2 and a∼ 0.25–0.5
as plausible values for the resistance metabolic cost and the
impact of the drug on S [76,77]. Our choice of K± ensures
that the dynamics is not dominated mainly by DN or EV,
but by the interplay of DN and EV, and the values of the
cooperation threshold Nth <K− guarantee that the fixation of
either strain or their coexistence are all scenarios arising with
finite probabilities in our simulations; see below and electronic
supplementary material, section A [42]. Note that, as discussed
in §4.2 and electronic supplementary material, section D.3, the
behaviour reported here can also be observed in big, realistic
populations of N > 106.

Figure 2a–c shows the in silico ν–δ phase diagrams corre-
sponding to the various fixation and coexistence scenarios
arising for different cooperation thresholds. For small
thresholds relative to EV (Nth & 10Kþ=K�, see electronic sup-
plementary material, section D.3 [42]), S displays a high
fixation probability (red region) at intermediate ν and non-
extreme δ, where R is most likely to be eradicated. Under
high/low values of ν (when δ is not too low), the red region
in figure 2a–c is surrounded by dark areas where the long-
lived coexistence of the strains is most likely. When the
threshold Nth is closer to K−, R is most likely to prevail in the
blue region of figure 2b,c, where the environment is predomi-
nantly in the harsh state (δ < 0). As Nth increases, the blue
region expands and gradually replaces the red and black
areas: the fixation of R is likely to occur in most of the ν–δ dia-
gram. In addition to the population make-up, the average
population size is a decreasing function of ν at fixed δ, and
increasingwith δ at fixed ν; see figure 4d,e and §4.1, and [21–25].

In what follows, we analyse the different phases of
figure 2a–c, focusing particularly on the characterisation of the
red area, and also determine how NR varies with the environ-
mental parameters in the different phases. This allows us to
determine the most favourable environmental conditions for the era-
dication of R and for the reduction of the population of pathogenic
cells, which are issues of great biological and practical relevance.
3.2. Weak demographic noise promotes coexistence
To gain an intuitive understanding of the model’s eco-
evolutionary dynamics, it is useful to discuss the sample
paths of figures 1b,c and 2d–f in terms of the population
size N and the R fraction x =NR/N.

It is instructive to first consider the case of very large
population arising with a constant and large carrying
capacity K(t) =K0≫ 1. In this setting, corresponding to a
static environment, we ignore all forms of fluctuations and
the system evolves according to the mean-field (determinis-
tic) differential equations

_N ¼
X
a¼R,S

(Tþ
a � T�

a ) ¼ N 1� N
K0

� �
ð3:1Þ

and

_x ¼ d
dt

NR

N
¼ Tþ

R � T�
R

N
� x

_N
N

¼ (au[Nth � xN]� s)xð1� xÞ
(1� au[Nth � xN])þ (au[Nth � xN]� s)x

, ð3:2Þ
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where the dot indicates the time derivative. It is clear from
equation (3.2) that the dynamics of the population compo-
sition, given by x, is coupled to that of its size N.
According to the logistic equation (3.1), the population size
reaches N = K0 on a time scale t∼ 1 independently of x,
while the population composition is characterised by a
stable equilibrium x = xth≡Nth/N =Nth/K0 reached on a
time scale of t∼ 1/s or ∼1/(a− s) from x >Nth/N or <Nth/
N, respectively. When s < a≪ 1, there is a time-scale separ-
ation, with N relaxing to its equilibrium much faster than x.
We note that the coexistence equilibrium in terms of R and
S is Neq

R ¼ Nth and Neq
S ¼ K0 �Nth. Clearly, this suggests

that S would unavoidably be wiped out if Nth was greater
than the carrying capacity, and hence we always consider
that the latter exceeds the cooperation threshold (K >Nth).

When the population is large enough for demographic
fluctuations to be negligible (1=

ffiffiffiffi
N

p ! 0) and the sole
source of randomness stems from the time-fluctuating
environment (random switches of the carrying capacity),
the dynamics becomes a so-called piecewise deterministic
Markov process (PDMP) [78]. Between each environmental
switch, the dynamics is deterministic and given by equations
(3.1), with K0 replaced by K± in the environmental state
ξ = ±1, and (3.2). Here, the PDMP is thus defined by

_N ¼ N 1� N
KðtÞ

� �
¼

N 1� N
K�

� �
, if j ¼ �1

N 1� N
Kþ

� �
, if j ¼ 1

8<
: , (3:3)

where the fluctuating carrying capacityK(t) is given byequation
(2.4), coupled to (3.2). Sample paths of this PDMP are shown as
solid lines in figures 1b,c and 2d–f. These realisations illustrate
that N(t) tracks the switching carrying capacity K(t) indepen-
dently of x, while x(t) evolves towards the coexistence
equilibrium at the cooperation threshold xth(t) =Nth/N(t),
which changes in time as N varies. Hence, x increases when
NR <Nth, and it decreases when NR >Nth. For extremely high
environmental switching rate ν→∞, the microbial community
experiences a large number of switches, between any update
of the population make-up. In this case, N is not able to track
K(t), but experiences an effectively constant carrying capacity
K ¼ K ; 1=h1=KðtÞi obtained by self-averaging the environ-
mental noise over its stationary distribution (see [21,22,24–26]),
leading to K ¼ 2KþK�=½ð1� dÞKþ þ ð1þ dÞK��. Hence, when
ν→∞, the community size is approximately N � K and, pro-
vided that δ is not too close to −1 (K not too close to K−),
long-lived coexistence of both strains is likely (with abundances
NR≈Nth and NS � K�Nth), as shown in figure 2f.
3.3. Antimicrobial resistance is robust to demographic
noise in static environments

When EV causes a population bottleneck, DN about the coex-
istence equilibrium may cause the extinction of one strain and
the fixation of the other (see figures 1b,c and 2d,e). To elucidate
the fate of microbial communities under fluctuating environ-
ments, it is therefore necessary to first understand how a
small community is able to fixate, or avoid extinction, in a
static environment, when it is subject to a constant carrying
capacity K0, with 1≪K0∼K−≪K+. This condition ensures
both fixation of one strain or long-lived coexistence are poss-
ible, i.e. demographic fluctuations, of order Oð1= ffiffiffiffi

K
p

0Þ,
matter but do not govern the dynamics.
Since the community composition tends to the coexistence
equilibrium x→ xth (see equation (3.2)), the faster N dynamics
reaches its steady state N→K0 before any fixation/extinction
events occur (see equation (3.1)). Therefore, we assume a fixed
N=K0. The evolutionary dynamics is thusmodelled by the ana-
lytically tractable Moran process [14,16,21,25,58,59], where the
population composition evolves stochastically by balancing
each birth/death of R by the simultaneous death/birth of a S,
according to the reactions

NR þNS �!
eTþ
R ðNR þ 1Þ þ ðNS � 1Þ

and

NR þNS �!
eT�
R ðNR � 1Þ þ ðNS þ 1Þ,

with the effective transition rates eT+
R ¼ T+

R T+
S =N obtained from

(2.2) [21,25].
Due to DN, the R fraction fluctuates around xth until the

eventual extinction of a strain. Therefore, from the classic
Moran results (electronic supplementary material, equation
(S6) in [42]), we can derive a simplified, approximated
expression for the R fixation probability by setting any initial
composition directly at coexistence x0 = xth, which yields

f ≃ 1

1þ 1=(1� s)K0�K�
0
with K�

0

; Nth
ln (1� a)
ln (1� s)

� ln (sð1� aÞ=ða� sÞ)
ln (1� s)

, ð3:4Þ

where we now assumed ð1� aÞNth � ð1� sÞNth and
ð1� sÞK0 � ð1� sÞNth , which is in line with our choices 0 <
s < a < 1 and Nth <K0. Here, K0* is the microbial population
size giving the same fixation probability 1/2 to R and S. In
our examples, s = 0.1 and a = 0.25 (see §3.1), and fixation equi-
probability is reached at K0*≈ 3Nth, where the R and S
abundance in the long-lived coexistence equilibrium are,
respectively, Neq

R � K0=3 and Neq
S � 2K0=3. Figure 3a shows

the excellent agreement between the approximation (3.4)
(solid lines) and the exact R fixation probability of the under-
lying Moran process of electronic supplementary material,
equation (S6) (dotted lines), for different cooperation
thresholds (Nth = 20–100).4

Equation (3.4) and figure 3a,b show that, in a static environ-
ment, the relative magnitude of the carrying-capacity-to-
threshold ratio K0/Nth with respect to K0*/Nth≈ ln(1− a)/
ln(1− s) clearly determines whether R fixates (for smaller
K0/Nth), becomes extinct (larger K0/Nth), or coexists with S
for a long time (larger K0/Nth and large populations). To inter-
pret these results, we remember that the mean field behaviour
tends to NR =Nth and NS =K0−Nth. When K0/Nth∼ 1, NS≈
K0−Nth is small, and S is prone to extinction (R fixates).
As the total population K0 increases (at fixed cooperation
threshold Nth), the equilibrium value NS≈K0−Nth increases,
making S less likely to go extinct. The fixation probability
of S thus rises, and overcomes that of the strain R when
K0 >K0*. However, the expected time for the fixation of S
increases exponentially with K0 and, for large enough
cooperation thresholds (typically for Nth > 50), fixation takes
too long and is unobservable in practice; see figure 3b. Note
that the expected S fixation time (or R extinction time) satu-
rates for K0 >K0* because the equilibrium value NR≈Nth is
independent of the total population K0. For all examples in
figure 2a–c, we have K0 ¼ Kþ ¼ 1000 . K�

0 when δ = 1 and
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K0 ¼ K� ¼ 120 , K�
0 when δ =−1. This explains the dark areas

(coexistence) in figure 2b,cwhere δ→ 1, and the blue regions (R
fixation) where δ→−1. In figure 2a, we observe dark regions
(coexistence) for both δ = ±1 as the MCT is always larger
than the coexistence threshold (t > 2K0). Therefore, it appears
that in static environments AMR always dominates or, at
least, survives for extended periods.
3.4. Demographic noise can eradicate antimicrobial
resistance in fluctuating environments

Under low and high environmental switching rates, the com-
munity behaves as in static total populations of size K± and
K, respectively; see electronic supplementary material, sec-
tions D.1 and D.2. Richer and novel dynamical behaviour
arises at intermediate switching rate (in figure 2a–c, see red
areas around ν = 10−2–100), when there are several environ-
mental switches prior to fixation, and the quantities ϕ and
Pcoex cannot be simply expressed in terms of their counter-
parts in a population of constant effective size. This
switching regime is characterised by the full interplay of
the ecological and evolutionary dynamics: as shown in
figures 1b and 2e, environmental switches can thus lead to
transient ‘bumps’ and ‘dips’ in NR (after the carrying capacity
increases K−→K+ or decreases K+→K−, respectively). The
transient NR dips, together with demographic fluctuations
caused by the population bottleneck (K+→K−), can thus
lead to the rapid eradication of R with the fixation of S (red
areas in figure 2a–c). Each dip has a small but non-negligible
probability to eradicate R and hence reduces the expected
coexistence time. Therefore, the ingredients for this
fluctuation-driven AMR eradication mechanism are: (i) inter-
mediate environmental switching, so that the total
population N fluctuates by tracking K(t) without lagging
behind (see green lines in figure 1b); (ii) a slower population
composition x coupled to the faster N, so that the R population
NR = xN experiences transient bumps and dips about its
equilibrium NR≈Nth (see blue lines in figure 1b,c); and (iii) a
small number of R at the bottom of transient dips NR∼ 1, so
that DN can drive R to extinction (see blue noisy line in
figure 1b).

Here, we are interested in characterising the transient NR

dips as the main fluctuation-driven mechanism leading to the
possible eradication of R. To study their properties, it is
useful to consider the PDMP description of the transient R
behaviour in large populations

_NR ¼ Tþ
R � T�

R ¼ (a�s)NRðaR�ðNR=KðtÞÞÞ
(1�a)þ(a�s)NR=NðtÞ ,

with aR ; ð1�sÞKðtÞ�ð1�aÞNðtÞ
ða�sÞKðtÞ ,

ð3:5Þ

where K(t) and N(t) are, respectively, given by equations (2.4)
and (3.3), and we assume NR <Nth. We note that, after a
switch from the mild to harsh environment (K+→K−) in the
absence of DN, R always survives the ensuing transient dip,
and NR rises towards the coexistence equilibrium NR =Nth;
see thick solid line in figure 1b. However, when K−≪K+ and
themicrobial community experiences a population bottleneck,
a transient dip to a small value of NR can form. When this
occurs, R is prone to extinction caused by non-negligible
demographic fluctuations (stronger when NR is small).

To characterise the region of the ν–δ phase diagram
where transient NR dips cause eradication of R, we need to
estimate tdip, defined as the time from the onset of the dip
to when NR reaches its minimal value according to
equation (3.5), see figure 1b. To determine tdip from (3.5),
we require _NRðtdipÞ ¼ 0, which, assuming K+≫ K−≫ 1,
yields αR =NR(tdip)/K− ≈ 0, implying N(tdip)≈K−(1− s)/
(1− a). From the solution of equation (3.1) with the initial
condition N(t = 0)≈K+, we find

tdip � ln
1� s
a� s

1� K�
Kþ

� �� �
: ð3:6Þ

Ignoring DN, we can thus estimate the R population at the
bottom of the transient dip Ndip

R , reached at t = tdip. This is,
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we find the R fraction at the bottom of the dip x(tdip) in the
small x limit of equation (3.2) and combine it with
the above N(tdip) to obtain (see electronic supplementary
material, section D.3 [42]):

Ndip
R ¼ xðtdipÞNðtdipÞ � NthK�

Kþ

1� s
1� a

1� s
a� s

� �ða�sÞ=ð1�aÞ

*
NthK�
Kþ

, ð3:7Þ

where we assumed that R started from NR(t = 0) =Nth. Demo-
graphic fluctuations at the bottom of a dip are of the orderffiffiffiffiffiffiffiffiffiffi

Ndip
R

q
. For DN to possibly drive R to extinction, and the fluctu-

ation-driven eradication scenario to hold, it is necessary thatffiffiffiffiffiffiffiffiffiffi
Ndip

R

q
� Ndip

R , which requires Ndip
R ¼ Oð1Þ, i.e. Ndip

R � 10 or

lower. This condition is certainly satisfied when K− and Nth

are of comparable size (with K− >Nth), and each of orderffiffiffiffiffiffiffi
Kþ

p
, which can also hold for realistically large populations

of N > 106, see §4.2 and electronic supplementary material,
section D.3 [42].

Under these sufficient requirements, the optimal environ-
mental conditions to rapidly eradicate R in large but
fluctuating populations can be estimated from equations
(3.1), (3.2), (3.5) and (3.6). First, in the mild environment
(K = K+), R needs to be able to evolve to the coexistence equi-
librium NR =Nth, requiring a longer average duration of the
mild environment n�1

þ when compared with the evolutionary
time scale s−1, i.e. n�1

þ * s�1. Second, after the switch from
mild to harsh environment (K+→K−), R needs to reach the
bottom of the transient dip and experience demographic fluc-
tuations, which imposes an average duration of the harsh
environment n�1

� longer than the average time to reach the
bottom of the dip tdip, that is, n�1

� * tdip. Third, if R survives
the dip, the environment should go back to the mild ξ = 1
state to rule out the extinction of S when the environment
stays in the harsh state ξ =−1. For this, we require the
harsh environment to be short, while ensuring that the dip
is not interrupted by a switch; see figure 1b,c. This enforces
n�1
� & 2 ln ðKþ=K�Þða� sÞ�1, where the right-hand side,
derived from the small x limit of equation (3.2), is twice the
expected time to reach the equilibrium in the harsh state
NR =Nth and NS =K− −Nth. As a fourth condition, we
demand that this cycle should be as fast as possible to maxi-
mise the number of transient dips (while still allowing the
population to evolve back to NR =Nth after a bump), yielding
n�1
þ & 2 ln ðKþ=K�Þs�1, which, similarly as in the previous
condition, is twice the average time needed to return to equi-
librium in the mild state. Using the environmental
parameters ν and δ, the above leads to

s
2 ln ðKþ=K�Þ & nopt(1� dopt) & s

and a�s
2 ln ðKþ=K�Þ & nopt(1þ dopt) & 1

tdip
:

ð3:8Þ

The green contour lines in figure 2a–c enclose the predicted
optimal region for the fast eradication of R under s = 0.1,
a = 0.25, K− = 120 and K− = 1000, and fall in the red areas
observed in silico. The borders of these regions depend on
Nth. This stems from the dependence of ϕ and MCT on Nth

(figure 3b) and the criterion for long-lived coexistence (t > 2
〈N〉). The conservative prediction (3.8) ignores any
dependence on Nth.
In summary, DN can eradicate AMR in fluctuating
environments when the population make-up x evolves on a
much slower time scale than the population size N, which
requires relatively small values of s and a. Moreover, the
variability in the carrying capacity K+/K− needs to be of
the order of the cooperation threshold Nth or larger; the
threshold has to fall below the lowest value of the carrying
capacity K−; and the switching rate ν has to be of order s
and hence comparable to the rate of relaxation of the popu-
lation composition. Note that all conditions above can be
met in biologically relevant systems of any size; see §4.2
and electronic supplementary material, section D.3 [42].
4. Discussion
The results of the previous section characterise the long-term
microbial population make-up under random switches
between mild and harsh environmental conditions (high
and low carrying capacity, K =K+ and K−, respectively), for
a broad range of the exogenous parameters (mean switching
frequency ν and switching bias δ). Another important aspect
of the time evolution of microbial population concerns the
non-trivial impact of the EV on the fraction and abundance
of drug-resistant (R) and drug-sensitive (S) microbes in the
different regimes, and especially in their phase of coexistence.
It is also important to review to what extent our modelling
assumptions are amenable to experimental probes.

4.1. Impact of environmental variability on the strains
fraction and abundance

It was recently shown that in the fluctuating environment
considered here, the average size of the microbial community
〈N〉 is a decreasing function of the random switching rate ν
(with δ kept fixed), that 〈N〉 decreases with lower δ (keeping
ν fixed), and that 〈N〉→K± as δ→ ±1 [21–23,25]; see figure 4d,e.
As a consequence, in the blue and red areas of the phase dia-
grams of figure 2, where only one strain survives (figure 2a–
c), the surviving pathogenic population can be reduced by
increasing the environmental switching frequency ν and/or
the time spent in harsh state (by enforcing δ→−1). Moreover,
since the R fraction x is directly coupled to N through the
cooperation threshold Nth (see equation (3.2)), EV non-trivi-
ally shapes the R fraction in the coexistence regime
(coloured areas in figure 4f ).

Under low switching frequency relative to the rate of
evolutionary dynamics (see n � resistance extra metabolic
cost s∼ 10−1 in all figures), R cells starting in the mild
environment (K+) are able to reach the coexistence equili-
brium NR =Nth before experiencing a switch; see figure 1c.
However, if the starting environment is harsh (K−), DN can
rapidly eradicate S and destroy coexistence (figure 2b,c).
The distributions of NR, NS and N in the regime ν→ 0 are
thus approximately bimodal because they combine both
mild and harsh (effectively constant) environments; with
NR≈Nth, NS≈K+−Nth and N≈K+ for the former; and
NR≈K−, NS≈ 0 and N≈K− for the latter; see figure 4a. As
the switching rate is increased to n & s, fixation dominates,
and the NR and NS bimodal distributions become approxi-
mately trimodal, i.e. NR/S≈ 0, K− or K+; see figure 4b. The
relative weight of the peaks at NR/S≈ 0 is set by S/R fixation
probability, which is modulated by the environmental bias δ,
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higher coexistence fraction of R (S). Lighter colour indicates lower coexistence probability, defined as the probability for no fixation event to occur before t = 2〈N〉.
The white and black asterisks in (e,f ) depict the environmental statistics for each of the top panels. All panels are computed at quasi-stationarity reached after a time
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see electronic supplementary material, equation (S9) [42]. The
total population distribution is still bimodal about N =K±

since its relaxation dynamics (of time scale ∼1; see equation
(3.1)) is faster than the evolutionary time scale of approxi-
mately s−1. Finally, when ν is increased further (ν≫ s), we
enter the coexistence regime characterised by an effective
carrying capacity K ¼ K [21–26], and all distributions
become unimodal about the coexistence equilibrium
NR≈Nth, NS � K�Nth and N � K; see figure 4c.

As a consequence, if R is eradicated, imposing high EV
(ν≫ s) and harsh conditions δ→−1 would considerably
reduce the abundance of the surviving community of patho-
genic S cells; see figure 4d, green solid line, and figure 4e.
However, if R survives, imposing ν≫ 1 and δ < 0 would not
only decrease the abundance of both strains but it would
also increase the R fraction, and risk further AMR spreading,
see figure 4f (magenta/bluish areas).
4.2. Review of the modelling assumptions
Since we study an idealised microbial model, it is important
to review our modelling assumptions in light of realistic
laboratory experimental conditions. A key assumption to
consider is the effectively sharp cooperation threshold Nth,
which is based on a number of experimental observations
of microbial cooperation; see [34–36,52]. Accordingly, we
have assumed that EV changes chemical concentrations
(e.g. nutrient density) while the volume of the microbial eco-
system is kept constant [52]. The cooperation threshold is
then fixed at a constant number of R microbes NR =Nth

because, at constant volume, the resistance enzyme concen-
tration is proportional to the number of public good
producers R. This crucial ingredient fixes the stable number
of R at Nth across fluctuating environments, and is respon-
sible for the transient dips which are at the origin of the
novel eco-evolutionary mechanism for the eradication of
AMR reported here. The complementary scenario, where
the cooperation threshold is set by a fixed R fraction xth is
also relevant (for a different set of microbial ecosystems),
and is a topic for future research. Furthermore, in some
microbial cases, R could regulate the production of resistance
enzyme by quorum sensing [79], but its impact on coopera-
tive AMR remains an open problem. We also note that
some resistance mechanisms can show anti-cooperative be-
haviour, such as efflux-pumps, which could result in an
enhanced exposure of sensitive cells to the drug [80,81]. In
the case of non-shared resistance mechanisms, our model
reduces to the eco-evolutionary processes studied in [21–
23,25]. Further analytical results for the non-shared resistance
models are discussed in [82], as well as in [83–85] in the case
of a static environment.

A second assumption to review concerns the simulation
results obtained here, for systems with K±∼ 102−103 and
Nth∼ 100, that we are able to computationally probe (see elec-
tronic supplementary material, section A [42]) but that
correspond to populations of relatively small size. In electronic
supplementary material, section D.3, we provide a detailed
discussion on how the rich microbial behaviour and novel
eco-evolutionary AMR eradication mechanism reported here
can be translated to larger, more realistic, microbial commu-
nities of size of order N * 106 [52] to N * 108 [31,86–89], or
higher. In our discussion, we argue that, as long as
NthK�=Kþ & 10 and 0 , s , a & 10�1–10−2, regardless of the
magnitude of K± or Nth, the transient dips studied here will
drag R close to extinction, where demographic fluctuations
are instrumental for the likely and rapid eradication of AMR.
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Note that, for very fast/slow fluctuating environments, where
transient dips are hindered (see §3.4), R and S populations will
always coexist unless K� �Nth & 10.

A specificity of our study is its focus on biostatic anti-
microbial drugs. However, since most antimicrobials
gradually change from acting as biostatic to biocidal as
their concentration in the medium grows [53–55], our
approach is consistent with a low antimicrobial concentration
scenario. Conveniently, the combined biostatic effect of the
drug and the normalisation of strain fitness in equation
(2.2) [14,16] decouples the total population N from its compo-
sition x. If any of the above conditions would not hold, N
would then directly depend on x, a case already studied for
a simpler model in [21,25]. It is worth noting that we have
confirmed that the main findings reported here are robust,
as they do not depend crucially on the detailed choice of
the transition rates in equation (2.2), and in particular they
are found to be essentially independent of the normalisation
by the average fitness; see §§2.1 and 3.3. We also note that the
values used in our examples for the extra metabolic cost to
generate the resistance enzyme (s � 10% to 25%), and for
the impact of the antimicrobial drug on S growth (a � 25%
to 50%), while only indicative, are plausible figures [76,77].

For the sake of simplicity, we have focused on modelling
EV through binary switches of the carrying capacity. These
switches capture sudden changes in the available resources
(as in feast and famine cycles [1–3,60]) that can also occur
in the presence of antimicrobial drugs, e.g. in polluted
environments or during drug treatment. In the context of
evolutionary processes, environments that fluctuate via
random switches are commonly modelled in terms of dichot-
omous Markov noise (DMN), also known as telegraph noise
[22–26,32,46–48,61,62]. Moreover, binary switching is the
standard way to implement EV in laboratory-controlled
experiments, where the concentration of nutrients can be
regulated in a chemostat set-up [63–66]. Although laboratory
experiments are often carried out with periodically switching
environments (e.g. [63,64]), and natural environmental con-
ditions often vary continuously in time and magnitude (e.g.
[66]), the relationship between DMN and other commonly
used forms of EV has already been extensively studied
[24,46,47]. Therefore, our choice of modelling EV with
DMN is natural, convenient and non-limiting: it allows us
to make mathematical progress while keeping the theoretical
modelling close to laboratory experimental conditions. The
literature suggests that the essence of our findings are
expected to hold for general fluctuating environments with
a time-varying carrying capacity, but the extent to which
other and more complex forms of EV than binary random
switching may alter our results for microbial communities
exhibiting cooperative AMR remains a problem to be studied.

Finally, we note that the novel eco-evolutionary mechan-
isms reported in this study to eradicate cooperative AMR,
and to reduce the total pathogenic microbial community, or
minimise the coexistence fraction of R, all take place at a bio-
logically and clinically relevant range of environmental
switching rates. Indeed, although our theoretical study does
not set a specific time scale of microbial growth, a plausible
rough estimate for a single replication cycle of a microbe
could be of the order of approximately 1 h. The novel AMR
eradication mechanism at ν∼ s then comes into play when
a single environmental phase lasts, on average, s−1∼ 10 h.
This could be consistent with the periodic administration of
a treatment that enforces microbial population bottlenecks,
and is a feasible time scale for laboratory experiments. Our
idealised model, however, assumes a homeostatic influx of
antimicrobial drug in all environments. Thus, an interesting
approach for future work would involve the joint application
of antimicrobial drug and population bottlenecks (in the
harsh environment), with no drug administered in the mild
environmental state.
5. Conclusion
Understanding how EV affects the demographic and ecologi-
cal evolution of microbes is central to tackle the threat of
AMR, an issue of pressing societal concern [33]. Central ques-
tions in studying AMR involve how the fraction of resistant
microbes changes in time, and by what mechanisms these
can possibly be eradicated.

It is well established that AMR is an emergent property
of microbial communities, shaped by complex interactions.
In particular, certain resistant cells able to inactivate anti-
microbials can, under certain conditions, protect the entire
microbial community. This mechanism can hence be viewed
as an AMR cooperative behaviour. Moreover, microbial popu-
lations are subject to changing conditions. For instance, the
size of a microbial population can vary greatly with the vari-
ation of the nutrients or toxins, and can e.g. experience
bottlenecks. As a result of evolving in volatile environments,
microbial communities are prone to be shaped by fluctuations.
In general, these stem from EV (exogenous noise) and, chiefly
in small populations, from DN. The underlying eco-evolution-
ary dynamics, characterised by the coupling of DN and EV, is
ubiquitous in microbial ecosystems and plays a key role to
understand the AMR evolution, but is still rather poorly
understood.

In this work, we have studied an idealised model of co-
operative AMR where a well-mixed, microbial population
consisting of sensitive and resistant cells is treated with an anti-
microbial (biostatic) drug, hindering microbial growth, in a
fluctuating environment. The latter is modelled by a binary
switching carrying capacity that fluctuates between two
values corresponding to mild and harsh conditions (high/
low values, respectively). Based on a body of experimental
work [34–39], we assume that resistant cells produce, at a
metabolic cost, an enzyme that inactivates the antimicrobial
drug. Importantly, the abundance of resistant microbes is
thus a proxy for the concentration of the drug-inactivating
enzyme, which above a certain abundance threshold, becomes
a public good by providing drug protection, at no metabolic
cost, to the sensitive strain. Above the cooperative threshold,
the latter hence have a fitness advantage over the resistant
strain, whereas, below the threshold, the drug is responsible
for a reduced fitness of the sensitive cells. In this setting, the
evolution of AMR can be viewed as a public good problem
in a varying environment, whose outcome is shaped by the
coupling of environmental and demographic fluctuations.

We have identified three regimes characterising the eco-
evolutionary dynamics of the model, associated with the
fixation of the resistant or sensitive microbes, or with
the long-lived coexistence of both strains. Our analysis
shows that, while AMR generally survives, and often prevails,
in static environments, a very different scenario can emerge
under EV. In fact, we demonstrate that fluctuations between
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mild and harsh conditions, coupled to DN, can lead to ‘transi-
ent dips’ in the abundance of resistant microbes, which can
then be driven to extinction by demographic fluctuations.
Here, we determine that this fluctuation-driven AMR eradication
mechanism occurs when the rate of environmental change is
comparable to that of the relaxation of the evolutionary
dynamics (ν∼ s). By computational means, we show that this
fluctuation-driven mechanism speeds up the eradication of
resistant cells, and argue that it holds also for large microbial
communities, comparable to those used in laboratory exper-
iments (N > 106). We have also studied how EV non-trivially
affects the strain abundance in the various regimes of the
model, and in particular have determined the complex long-
lived distribution of the fraction of resistant cells when both
strains coexist and the environment fluctuates.

In conclusion, we have shown the existence of a biophysi-
cally plausible novel mechanism, driven by the coupling of
EV and DN, to eradicate resistant microbes, and have demon-
strated how EV shapes the long-lived microbial population in
the possible scenarios of strains coexistence or fixation. Our
work thus paves the way for numerous possible applications,
for instance, in microbial experiments with controlled
environmental fluctuations (it is currently possible to track
even individual microbes; e.g. [90,91]), which might shed
light on new possible treatments against AMR in real-world
clinical infections.
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Endnotes
1Here, for simplicity, we focus on biostatic drugs that reduce growth
rate of sensitive cells S. Biocidal drugs would increase the death rate
of S. In fact, our choice is not particularly limiting since the effect of a
same drug can be either biostatic or biocidal, depending on the
concentration of cells, and antimicrobial [53–55].
2The model will finally settle in the absorbing state NR =NS = 0,
which corresponds to the eventual extinction of the entire population.
This occurs after a time that grows exponentially with the system size
and that is unobservable when, as here, K(t)≫ 1 [21,23,25,68]. This
phenomenon, irrelevant for our purposes, is not considered here.
3The rationale is that the MCT in two-strategy evolutionary games
scales linearly with 〈N〉 in neutral regimes, exponentially with 〈N〉
in coexistence regimes and sublinearly with 〈N〉 in regimes where a
strain dominates [57,70–73]; see also [74,75]. Therefore, t > 2〈N〉 is a
conservative proxy of coexistence, since it allows us to distinguish
between regimes where one of the strains dominates and fixates in
a time t≤ 2〈N〉 from a phase of long-lived coexistence (prior to the
eventual fixation of one strain, after a time practically unobservable
when 〈N〉≫ 1).
4We note that, in the full model simulations at static environments,
the total population N is not fixed but fluctuates about K0. In elec-
tronic supplementary material, section C [42], we discuss the minor
quantitative impact of these N fluctuations on the fixation probability
and MCT, see electronic supplementary material, figure S1.
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