2 research outputs found
Mobile measurements of black carbon and PM: optimization of techniques and data analysis for pedestrian exposure
The health effects of particulate air pollution and the evaluation of mitigation efforts to
address them have been focused in the past on measurements of bulk mass concentrations of aerosol particles (particulate matter or PM) at fixed locations instead of more traffic-related PM such as black carbon (BC). A more appropriate investigation of the spatial and temporal variabilities of these pollutants is necessary to effectively estimate realistic pedestrian exposure. In this work, three novel scientific contributions are presented with an overarching goal of quantifying the influence of environmental factors on the spatial and temporal distributions of BC and PM2.5 (all particles smaller than 2.5 micrometers) in urban areas. Mass
concentrations of BC and PM2.5 were obtained with a mobile platform called the âaerosol backpackâ. With this tool, strategic mobile measurement field campaigns were conducted at multiple sites in four countries to achieve the scientific objectives of this work.
First, a concept was developed to optimize the mobile measurement strategy for obtaining high-quality data for scientific analyses including a traceable way to reconstruct and calculate PM2.5 mass concentrations from an optical particle size spectrometer. Second, an entire investigation was done on the field performance of the most widely-used portable absorption photometer for measuring BC mass concentrations, the AE51. Results show that these instruments are robust and reliable across different environments. Third, a statistical approach based on a Bayesian distributional model was developed and refined to suitably analyze mobile measurement datasets and extract reliable information. Through this model, the differences between the effects of human activities and other environmental factors on BC and PM2.5 have been quantified. These results quantitatively confirm that spatial and temporal characteristics related to human activities have stronger
effects on the variability of the BC mass concentration than on the regulated PM2.5 â
consequently, having more influence on pedestrian exposure.
This study highlights the importance of high data quality for mobile measurements to
make them useful in exposure assessment, particularly to pollutants that are highly
variable in space. Finally, this study contributes to the growing evidence of the
importance of including more traffic-related pollutants to monitor air quality in urban
areas and create appropriate mitigation strategies to combat the adverse health effects of air pollution.:Table of Contents
Bibliographic Description .................................................................................................. i
Bibliografische Beschreibung ........................................................................................... ii
1. Introduction ................................................................................................................... 1
1.1 Black carbon ....................................................................................................... 2
1.2 Mobile measurements ........................................................................................ 5
1.3 Objectives ............................................................................................................... 6
2. Methodology ................................................................................................................. 9
2.1 TROPOS Aerosol backpack ................................................................................... 9
2.1.1 Instrumentation .............................................................................................. 10
2.2 Mobile measurement strategy ........................................................................... 12
2.3 Phase 1 â Pilot studies .......................................................................................... 12
2.3.1 MACE-2015, Manila Philippines (Master thesis) ......................................... 13
2.3.2 Saxony Soot Project 2016, Leipzig and Dresden, Germany .......................... 15
2.4 Phase 2 â Optimization of MM and quality assurance ......................................... 18
2.4.1 CARE-2017, Rome, Italy .............................................................................. 18
2.4.2 Other datasets ................................................................................................. 19
2.5 Phase 3 â Data analysis ......................................................................................... 20
2.5.1 Statistical model: lognormal distributional regression .................................. 21
3. Results and Discussion ............................................................................................... 27
3.1 First publication .................................................................................................... 27
3.1.1 Methodology for high-quality mobile measurement with focus on black carbon
and particle mass concentrations ............................................................................ 27
3.2 Second publication ................................................................................................ 45
3.2.1 Performance of microAethalometers: Real-world field intercomparisons from
multiple mobile measurement campaigns in different atmospheric environments 45
3.3 Third Publication .................................................................................................. 73
iv
3.3.1 Pedestrian exposure to black carbon and PM2.5 emissions in urban hotspots:
New findings using mobile measurement techniques and flexible Bayesian
regression models .................................................................................................... 73
4. Summary and Conclusions ....................................................................................... 101
5. Outlook ..................................................................................................................... 107
Appendix ....................................................................................................................... 109
A.1 Publications included in the Doctoral Thesis and Authorâs contributions ......... 109
A.2 Other Publications as First Author and Co-author during PhD ......................... 111
A.3 PhD Committee .................................................................................................. 113
A.4 Supervision Committee ...................................................................................... 114
List of Figures ............................................................................................................... 115
List of Tables ................................................................................................................ 116
Abbreviations ................................................................................................................ 117
Bibliography ................................................................................................................. 119
Acknowledgement ........................................................................................................ 129Die gesundheitlichen Auswirkungen der Luftverschmutzung durch Feinstaub und die
Bewertung von MaĂnahmen zu ihrer EindĂ€mmung konzentrierten sich bisher auf
Messungen der Massenkonzentration von Aerosolpartikeln (PM; Particulate Matter) an festen Standorten und nicht auf verkehrsbedingte Aerosolpartikel wie z. B. Ruà (BC; Black Carbon). Eine zielgerichtete Untersuchung der rÀumlichen und zeitlichen
VariabilitÀt dieser Schadstoffe ist notwendig, um die realistische Exposition von
FuĂgĂ€ngern effektiv abzuschĂ€tzen. In dieser Arbeit werden drei neue wissenschaftliche AnsĂ€tze mit dem ĂŒbergreifenden Ziel vorgestellt, den Einfluss von Umweltfaktoren auf die rĂ€umliche und zeitliche Verteilung von BC und PM2,5 in stĂ€dtischen Gebieten zu quantifizieren. Die Massenkonzentrationen von BC und PM2,5 (alle Partikel kleiner 2,5 Mikrometer) wurden mit einer mobilen Plattform, dem Aerosol-Rucksack, gemessen.
Damit wurden strategische mobile Messkampagnen an mehreren Standorten in
verschiedenen LĂ€ndern durchgefĂŒhrt, um die wissenschaftlichen Ziele dieser Arbeit zu erreichen.
Dazu wurde zunÀchst ein Konzept zur Optimierung der mobilen Messstrategie
entwickelt, um qualitativ hochwertige Daten fĂŒr wissenschaftliche Analysen zu erhalten, einschlieĂlich einer nachvollziehbaren Methode zur Rekonstruktion und Berechnung von PM2.5-Massekonzentrationen aus Messungen mit einem optischen
PartikelgröĂenspektrometer. Zweitens wurde die LeistungsfĂ€higkeit der am hĂ€ufigsten verwendeten tragbaren Absorptionsphotometers zur Messung der BCMassekonzentration unter realistischen Bedingungen untersucht. Diese Ergebnisse zeigen, dass die verwendeten GerĂ€te in den unterschiedlichsten Umgebungen robust und zuverlĂ€ssig einsetzbar sind. Drittens wurde ein statistischer Ansatz entwickelt und angepasst, um mobile MessdatensĂ€tze in geeigneter Weise zu analysieren und weitere nĂŒtzliche Informationen zu gewinnen. Mithilfe dieses Modells wurden die Unterschiede zwischen den Auswirkungen menschlicher AktivitĂ€ten und anderer Umweltfaktoren auf BC und PM2,5 quantifiziert. Diese Ergebnisse bestĂ€tigen quantitativ, dass rĂ€umliche und zeitliche Merkmale im Zusammenhang mit menschlichen AktivitĂ€ten stĂ€rkere Auswirkungen auf die VariabilitĂ€t der BC-Massekonzentration haben als auf die regulierte PM2,5-Konzentration - und folglich auch einen gröĂeren Einfluss auf die Exposition von FuĂgĂ€ngern.
Diese Studie unterstreicht die Bedeutung hoher DatenqualitÀt bei mobilen Messungen zur ExpositionsabschÀtzung, insbesondere bei Schadstoffen, die rÀumlich sehr variabel sind.
Insbesondere trÀgt diese Studie dazu bei, die Notwendigkeit hervorzuheben, in
stĂ€dtischen Gebieten mehr verkehrsbedingte Luftschadstoffe in die Ăberwachung der LuftqualitĂ€t einzubeziehen. DarĂŒber hinaus sollen geeignete Strategien, zur BekĂ€mpfung der gesundheitsschĂ€dlichen Auswirkungen der Luftverschmutzung, entwickelt werden.:Table of Contents
Bibliographic Description .................................................................................................. i
Bibliografische Beschreibung ........................................................................................... ii
1. Introduction ................................................................................................................... 1
1.1 Black carbon ....................................................................................................... 2
1.2 Mobile measurements ........................................................................................ 5
1.3 Objectives ............................................................................................................... 6
2. Methodology ................................................................................................................. 9
2.1 TROPOS Aerosol backpack ................................................................................... 9
2.1.1 Instrumentation .............................................................................................. 10
2.2 Mobile measurement strategy ........................................................................... 12
2.3 Phase 1 â Pilot studies .......................................................................................... 12
2.3.1 MACE-2015, Manila Philippines (Master thesis) ......................................... 13
2.3.2 Saxony Soot Project 2016, Leipzig and Dresden, Germany .......................... 15
2.4 Phase 2 â Optimization of MM and quality assurance ......................................... 18
2.4.1 CARE-2017, Rome, Italy .............................................................................. 18
2.4.2 Other datasets ................................................................................................. 19
2.5 Phase 3 â Data analysis ......................................................................................... 20
2.5.1 Statistical model: lognormal distributional regression .................................. 21
3. Results and Discussion ............................................................................................... 27
3.1 First publication .................................................................................................... 27
3.1.1 Methodology for high-quality mobile measurement with focus on black carbon
and particle mass concentrations ............................................................................ 27
3.2 Second publication ................................................................................................ 45
3.2.1 Performance of microAethalometers: Real-world field intercomparisons from
multiple mobile measurement campaigns in different atmospheric environments 45
3.3 Third Publication .................................................................................................. 73
iv
3.3.1 Pedestrian exposure to black carbon and PM2.5 emissions in urban hotspots:
New findings using mobile measurement techniques and flexible Bayesian
regression models .................................................................................................... 73
4. Summary and Conclusions ....................................................................................... 101
5. Outlook ..................................................................................................................... 107
Appendix ....................................................................................................................... 109
A.1 Publications included in the Doctoral Thesis and Authorâs contributions ......... 109
A.2 Other Publications as First Author and Co-author during PhD ......................... 111
A.3 PhD Committee .................................................................................................. 113
A.4 Supervision Committee ...................................................................................... 114
List of Figures ............................................................................................................... 115
List of Tables ................................................................................................................ 116
Abbreviations ................................................................................................................ 117
Bibliography ................................................................................................................. 119
Acknowledgement ........................................................................................................ 12
The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area
Residential wood combustion is a widespread practice in Europe with a serious impact on air quality, especially in mountainous areas. While there is a significant number of studies conducted in deep urbanized valleys and basins, little is known about the air pollution processes in rural shallow hollows, where around 30â% of the people in mountainous areas across Europe live. We aim to determine the influence of ground temperature inversions on wood combustion aerosol pollution in hilly, rural areas. The study uses Retje karst hollow (LoĆĄki Potok, Slovenia) as a representative site for mountainous and hilly rural areas in central and south-eastern Europe with residential wood combustion. Sampling with a mobile monitoring platform along the hollow was performed in December 2017 and January 2018. The backpack mobile monitoring platform was used for the determination of equivalent black carbon (eBC) and particulate matter (PM) mass concentrations along the hollow. To ensure high quality of mobile measurement data, intercomparisons of mobile instruments with reference instruments were performed at two air quality stations during every run. Our study showed that aerosol pollution events in the relief depression were associated with high local emission intensities originating almost entirely from residential wood burning and shallow temperature inversions (58âm on average). The eBC and PM mass concentrations showed stronger associations with the potential temperature gradient (R2=0.8) than with any other meteorological parameters taken into account (ambient temperature, relative humidity, wind speed, wind direction, and precipitation). The strong association between the potential temperature gradient and pollutant concentrations suggests that even a small number of emission sources (total 243 households in the studied hollow) in similar hilly and mountainous rural areas with frequent temperature inversions can significantly increase the levels of eBC and PM and deteriorate local air quality. During temperature inversions the measured mean eBC and PM2.5 mass concentrations in the whole hollow were as high as 4.5±2.6 and 48.0â±â27.7â”gâmâ3, respectively, which is comparable to larger European urban centres