2,778 research outputs found
Mapping Nairobi's dairy food system: An essential analysis for policy, industry and research
Demand for dairy products in sub-Saharan Africa, is expected to triple by 2050, while limited increase in supply is predicted. This poses significant food security risk to low income households. Understanding how the dairy food system operates is essential to identify mitigation measures to food insecurity impact. This study aims to determine the structure and functionality of Nairobi's dairy system using a value chain mapping approach
Transmission of High-Power Electron Beams Through Small Apertures
Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the
energy-recovery linac at the Jefferson Laboratory's FEL facility through a set
of small apertures in a 127 mm long aluminum block. Beam transmission losses of
3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour
continuous run.Comment: arXiv admin note: text overlap with arXiv:1305.019
Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures
We report measurements of photon and neutron radiation levels observed while
transmitting a 0.43 MW electron beam through millimeter-sized apertures and
during beam-off, but accelerating gradient RF-on, operation. These measurements
were conducted at the Free-Electron Laser (FEL) facility of the Jefferson
National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an
energy-recovery linear accelerator. The beam was directed successively through
6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a
maximum current of 4.3 mA (430 kW beam power). This study was conducted to
characterize radiation levels for experiments that need to operate in this
environment, such as the proposed DarkLight Experiment. We find that sustained
transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is
feasible with manageable beam-related backgrounds. We also find that during
beam-off, RF-on operation, multipactoring inside the niobium cavities of the
accelerator cryomodules is the primary source of ambient radiation when the
machine is tuned for 130 MeV operation.Comment: 9 pages, 11 figures, submitted to Nuclear Instruments and Methods in
Physics Research Section
Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG
Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features which utilised specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this work, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight towards the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilised as opposed to binary IED and non-IED labels. The resulting model achieves state of the art classification performance and is also invariant to time differences between the IEDs. This study suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the dat
Scale up your In-Memory Accelerator: Leveraging Wireless-on-Chip Communication for AIMC-based CNN Inference
Analog In-Memory Computing (AIMC) is emerging as a disruptive paradigm for heterogeneous computing, potentially delivering orders of magnitude better peak performance and efficiency over traditional digital signal processing architectures on Matrix-Vector multiplication. However, to sustain this throughput in real-world applications, AIMC tiles must be supplied with data at very high bandwidth and low latency; this poses an unprecedented pressure on the on-chip communication infrastructure, which becomes the system's performance and efficiency bottleneck. In this context, the performance and plasticity of emerging on-chip wireless communication paradigms provide the required breakthrough to up-scale on-chip communication in large AIMC devices. This work presents a many-tile AIMC architecture with inter-tile wireless communication that integrates multiple heterogeneous computing clusters, embedding a mix of parallel RISC-V cores and AIMC tiles. We perform an extensive design space exploration of the proposed architecture and discuss the benefits of exploiting emerging on-chip communication technologies such as wireless transceivers in the millimeter-wave and terahertz band
Recommended from our members
Sparse common feature analysis for detection of interictal epileptiform discharges from concurrent scalp EEG
Temporal interictal epileptiform discharges (IEDs) are often invisible in the scalp EEG (sEEG). However, due to within-electrode temporal correlation and between-electrode spatial correlation, they still have their signatures in the sEEG. Therefore, it is expected to have some common spatial and temporal features among the IEDs. In this paper, we first present a novel method, called common feature analysis (CFA)-based method, for IED detection via an existing common orthogonal basis extraction (COBE) algorithm. In the second approach, we benefit from the sparsity of IED waveforms in developing a new algorithm, namely sparse COBE, and based on that, a sparse CFA (SCFA)-based method for IED detection. The proposed CFA and SCFA models are compared with two state-of-the-art IED detection methods. Two types of approaches, namely within- and between-subject classification approaches, are employed for evaluating the methods. SCFA outperforms the others and achieves the accuracy values of 75.1% and 67.8% using within- and between-subject classification approaches, respectively. This enables the proposed techniques to capture the intracranial biomarkers of epilepsy and ameliorate the performance of a classifier in automatically detecting the scalp-invisible IEDs from sEEG
Recommended from our members
Do interictal epileptiform discharges and brain responses to electrical stimulation come from the same location? An advanced source localization solution
Identification of seizure sources in the brain is of paramount importance, particularly for drug-resistant epilepsy patients who may require surgical operation. Interictal epileptiform discharges (IEDs), which may or may not be frequent, are known to originate from seizure networks. Delayed responses (DRs) to brain electrical stimulation have been recently discovered. If DRs and IEDs come from the same location and the DRs can be accurately localized, there will be a significant step in identification of the seizure sources. The solution to this important question has been investigated in this paper. For this, we have exploited the morphology of these spike-type events, as well as the variability in their temporal locations, to develop new constraints for an adaptive Bayesian beamformer that outperforms the conventional and recently proposed beamformers even for identifying correlated sources. This beamformer is applied to an array (a.k.a mat) of cortical EEG electrodes. The developed approach has been tested on 300 data segments from five epileptic patients included in this study, which clinically represent a large population of candidates for surgical treatment. As the significant outcome of applying this beamformer, it is very likely (if not certain) that for an epileptic subject, the IEDs and DRs originate from the same location in the brain. This paves the way for a quick identification of the source(s) of seizure in the brain
New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both
calculable from first principles using various theoretical approaches and of
interest for the understanding of a wide range of questions in many body
physics. Unfortunately, the pair correlation function inferred from
neutron scattering measurements of the differential cross section from different measurements reported in the literature are
inconsistent. We have measured the energy dependence of the total cross section
and the scattering cross section for slow neutrons with energies between
0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the
parahydrogen component) using neutron transmission measurements on the hydrogen
target of the NPDGamma collaboration at the Spallation Neutron Source at Oak
Ridge National Laboratory. The relationship between the neutron transmission
measurement we perform and the total cross section is unambiguous, and the
energy range accesses length scales where the pair correlation function is
rapidly varying. At 1~meV our measurement is a factor of 3 below the data from
previous work. We present evidence that these previous measurements of the
hydrogen cross section, which assumed that the equilibrium value for the ratio
of orthohydrogen and parahydrogen has been reached in the target liquid, were
in fact contaminated with an extra non-equilibrium component of orthohydrogen.
Liquid parahydrogen is also a widely-used neutron moderator medium, and an
accurate knowledge of its slow neutron cross section is essential for the
design and optimization of intense slow neutron sources. We describe our
measurements and compare them with previous work.Comment: Edited for submission to Physical Review
Neutron Beta Decay Studies with Nab
Precision measurements in neutron beta decay serve to determine the coupling
constants of beta decay and allow for several stringent tests of the standard
model. This paper discusses the design and the expected performance of the Nab
spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg,
Florida, May 201
Recommended from our members
Reduced free asparagine in wheat grain resulting from a natural deletion of TaASNB2: investigating and exploiting diversity in the asparagine synthetase gene family to improve wheat quality
Background: Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine levels, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties.
Results:
Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine levels in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high levels as a result of sulphur deficiency.
Conclusions: Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine levels in commercial wheat grain
- …