61 research outputs found

    FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion

    Get PDF
    The overexpression of members of the ErbB tyrosine kinase receptor family has been associated with cancer progression. We demonstrate that focal adhesion kinase (FAK) is essential for oncogenic transformation and cell invasion that is induced by ErbB-2 and -3 receptor signaling. ErbB-2/3 overexpression in FAK-deficient cells fails to promote cell transformation and rescue chemotaxis deficiency. Restoration of FAK rescues both oncogenic transformation and invasion that is induced by ErbB-2/3 in vitro and in vivo. In contrast, the inhibition of FAK in FAK-proficient invasive cancer cells prevented cell invasion and metastasis formation. The activation of ErbB-2/3 regulates FAK phosphorylation at Tyr-397, -861, and -925. ErbB-induced oncogenic transformation correlates with the ability of FAK to restore ErbB-2/3–induced mitogen-activated protein kinase (MAPK) activation; the inhibition of MAPK prevented oncogenic transformation. In contrast, the inhibition of Src but not MAPK prevented ErbB–FAK-induced chemotaxis. In migratory cells, activated ErbB-2/3 receptors colocalize with activated FAK at cell protrusions. This colocalization requires intact FAK. In summary, distinct FAK signaling has an essential function in ErbB-induced oncogenesis and invasiveness

    Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion

    Get PDF
    The actin cross-linking protein filamin A reduces migration, invasion, and metastasis of breast cancer cells

    Identification of R-Spondin Gene Signature Predictive of Metastatic Progression in BRAFV600E-Positive Papillary Thyroid Cancer

    Full text link
    Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland and early stages are curable. However, a subset of PTCs shows an unusually aggressive phenotype with extensive lymph node metastasis and higher incidence of locoregional recurrence. In this study, we investigated a large cohort of PTC cases with an unusual aggressive phenotype using a high-throughput RNA sequencing (RNA-Seq) to identify differentially regulated genes associated with metastatic PTC. All metastatic PTC with mutated BRAF (V600E) but not BRAF wild-type expressed an up-regulation of R-Spondin Protein 4 (RSPO4) concomitant with an upregulation of genes involved in focal adhesion and cell-extracellular matrix signaling. Further immunohistochemistry validation confirmed the upregulation of these target genes in metastatic PTC cases. Preclinical studies using established PTC cell lines support that RSPO4 overexpression is associated with BRAF V600E mutation and is a critical upstream event that promote activation of kinases of focal adhesion signaling known to drive cancer cell locomotion and invasion. This finding opens up the potential of co-targeting B-Raf, RSPO and focal adhesion proteins as a pharmacological approach for aggressive BRAF V600E PTC

    Fascin promotes migration and invasion and is a prognostic marker for oral squamous cell carcinoma

    Get PDF
    Oral squamous cell carcinoma (OSCC) prognosis is related to clinical stage and histological grade. However, this stratification needs to be refined. We conducted a comparative proteome study in microdissected samples from normal oral mucosa and OSCC to identify biomarkers for malignancy. Fascin and plectin were identified as differently expressed and both are implicated in several malignancies, but the clinical impacts of aberrant fascin and plectin expression in OSCCs remains largely unknown. Immunohistochemistry and real-time quantitative PCR were carried out in ex vivo OSCC samples and cell lines. A loss-of-function strategy using shRNA targeting fascin was employed to investigate in vitro and in vivo the fascin role on oral tumorigenesis. Transfections of microRNA mimics were performed to determine whether the fascin overexpression is regulated by miR-138 and miR-145. We found that fascin and plectin are frequently upregulated in OSCC samples and cell lines, but only fascin overexpression is an independent unfavorable prognostic indicator of disease-specific survival. In combination with advanced T stage, high fascin level is also an independent factor of disease-free survival. Knockdown of fascin in OSCC cells promoted cell adhesion and inhibited migration, invasion and EMT, and forced expression of miR-138 in OSCC cells significantly decreased the expression of fascin. In addition, fascin downregulation leads to reduced filopodia formation and decrease on paxillin expression. The subcutaneous xenograft model showed that tumors formed in the presence of low levels of fascin were significantly smaller compared to those formed with high fascin levels. Collectively, our findings suggest that fascin expression correlates with disease progression and may serve as a prognostic marker and therapeutic target for patients with OSCC.Peer reviewe

    RNF8 ubiquitylation of XRN2 facilitates R-loop resolution and restrains genomic instability in BRCA1 mutant cells

    Get PDF
    Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops

    Advances in DNA Repair in Cancer Therapy

    No full text
    VIII, 312 p. 35 illus., 25 illus. in color.onlin

    ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Get PDF
    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed
    • …
    corecore