55 research outputs found

    Role of UDP-Glucuronosyltransferase Isoforms in 13-cis Retinoic Acid Metabolism in Humans

    Get PDF
    ABSTRACT: 13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K m values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K m and is expressed in both the intestine and at high levels in the liver

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Response to Siegelet al.

    No full text

    Carboplatin Dosing in Infants With Retinoblastoma: A Case for Therapeutic Drug Monitoring

    No full text

    Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib

    No full text
    Purpose: This study implements a physiologically based pharmacokinetic (PBPK) modelling approach to predict the effect of hydrastine and berberine, two major alkaloids present in goldenseal extract, on pharmacokinetics of imatinib and bosutinib. Methods: PBPK models of hydrastine and berberine were developed in the Simcyp Simulator (version 17), integrating prior in vitro knowledge and published clinical pharmacokinetic data. The models account for reversible and irreversible (mechanism-based) inhibition of CYP3A enzymes as well as inhibition of the P-glycoprotein transporter. Inhibitory potencies of hydrastine and berberine on imatinib and bosutinib were estimated based on in vitro inhibition of metabolite formation. Results: The PBPK models provided reliable estimates on the magnitude of interactions due to co-administration of goldenseal extract or high-dose berberine on substrates of CYP3A enzymes (midazolam, indinavir and cyclosporine) and P-glycoprotein (digoxin). PBPK simulations predicted a moderate twofold increase (5th to 95th percentiles of prediction of 1.4–3.1) in systemic exposure (AUC) of bosutinib when co-administered with clinically relevant doses of goldenseal extract. A high dose of berberine (300 mg thrice daily) was also expected to affect bosutinib exposure, albeit to a lesser extent than that predicted with goldenseal (AUC ratio of 1.3, 5th to 95th percentile: 1.1–1.6). Conversely, the corresponding effects on imatinib exposure are unlikely to be of clinical importance (predicted AUC ratios of 1.0–1.2). Conclusion: PBPK model-based predictions highlighted potential clinically significant interactions between goldenseal extract and bosutinib, but not imatinib. Dose adjustment may need to be considered if co-administration is desirable. These findings should be confirmed with optimally designed controlled drug interaction studies. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Physiologically-based pharmacokinetic model predictions of inter-ethnic differences in imatinib pharmacokinetics and dosing regimens

    No full text
    Aims: This study implements a physiologically-based pharmacokinetic (PBPK) modelling approach to investigate inter-ethnic differences in imatinib pharmacokinetics and dosing regimens. Methods: A PBPK model of imatinib was built in the Simcyp Simulator (version 17) integrating in vitro drug metabolism and clinical pharmacokinetic data. The model accounts for ethnic differences in body size and abundance of drug-metabolising enzymes and proteins involved in imatinib disposition. Utility of this model for prediction of imatinib pharmacokinetics was evaluated across different dosing regimens and ethnic groups. The impact of ethnicity on imatinib dosing was then assessed based on the established range of trough concentrations (Css,min). Results: The PBPK model of imatinib demonstrated excellent predictive performance in describing pharmacokinetics and the attained Css,min in patients from different ethnic groups, shown by prediction differences that were within 1.25-fold of the clinically-reported values in published studies. PBPK simulation suggested a similar dose of imatinib (400–600 mg/d) to achieve the desirable range of Css,min (1000–3200 ng/mL) in populations of European, Japanese and Chinese ancestry. The simulation indicated that patients of African ancestry may benefit from a higher initial dose (600–800 mg/d) to achieve imatinib target concentrations, due to a higher apparent clearance (CL/F) of imatinib compared to other ethnic groups; however, the clinical data to support this are currently limited. Conclusion: PBPK simulations highlighted a potential ethnic difference in the recommended initial dose of imatinib between populations of European and African ancestry, but not populations of Chinese and Japanese ancestry. © 2021 British Pharmacological Society
    corecore