70 research outputs found

    Preliminary Characterization of Voltage-Activated Whole-Cell Currents in Developing Human Vestibular Hair Cells and Calyx Afferent Terminals

    Get PDF
    We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11–14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15–18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, G(K,L). A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a “collapsing” tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15–18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs

    The long term effects of sports concussion on retired Australian football players: a study using Transranial Magnetic Stimulation

    Full text link
    This study investigated corticomotor excitability and inhibition, cognitive functioning, and fine motor dexterity in retired elite and amateur Australian football (AF) players who had sustained concussions during their playing careers. Forty male AF players who played at the elite level (n=20; mean age 49.7±5.7 years) or amateur level (n=20; mean age 48.4±6.9 years), and had sustained on average 3.2 concussions 21.9 years previously, were compared with 20 healthy age-matched male controls (mean age 47.56±6.85 years). All participants completed assessments of fine dexterity, visuomotor reaction time, spatial working memory (SWM), and associative learning (AL). Transcranial magnetic stimulation (TMS) was used to measure corticospinal excitability: stimulus-response (SR) curves and motor evoked potential (MEP) 125% of active motor threshold (aMT); and intracortical inhibition: cortical silent period (cSP), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). Healthy participants performed better in dexterity (p=0.003), reaction (p=0.003), and movement time (p=0.037) than did both AF groups. Differences between AF groups were found in AL (p=0.027) and SWM (p=0.024). TMS measures revealed that both AF groups showed reduced cSP duration at 125% aMT (p>0.001) and differences in SR curves (p>0.001) than did healthy controls. Similarly, SICI (p=0.012) and LICI (p=0.009) were reduced in both AF groups compared with controls. Regression analyses revealed a significant contribution to differences in motor outcomes with the three measures of intracortical inhibition. The measures of inhibition differed, however, in terms of which performance measure they had a significant and unique predictive relationship with, reflecting the variety of participant concussion injuries. This study is the first to demonstrate differences in motor control and intracortical inhibition in AF players who had sustained concussions during their playing career two decades previously

    Molecular response to aromatase inhibitor treatment in primary breast cancer

    Get PDF
    BackgroundAromatase inhibitors such as anastrozole and letrozole are highly effective suppressants of estrogen synthesis in postmenopausal women and are the most effective endocrine treatments for hormone receptor positive breast cancer in such women. Little is known of the molecular effects of these agents on human breast carcinomas in vivo.MethodsWe randomly assigned primary estrogen receptor positive breast cancer patients to treatment with anastrozole or letrozole for 2 weeks before surgery. Expression profiling using cDNA arrays was conducted on pretreatment and post-treatment biopsies. Sample pairs from 34 patients provided sufficient RNA for analysis.ResultsProfound changes in gene expression were seen with both aromatase inhibitors, including many classical estrogen-dependent genes such as TFF1, CCND1, PDZK1 and AGR2, but also many other genes that are likely to represent secondary responses; decrease in the expression of proliferation-related genes were particularly prominent. Many upregulated genes are involved in extracellular matrix remodelling, including collagens and members of the small leucine-rich proteoglycan family (LUM, DCN, and ASPN). No significant differences were seen between letrozole and anastrozole in terms of molecular effects. The gene changes were integrated into a Global Index of Dependence on Estrogen (GIDE), which enumerates the genes changing by at least twofold with therapy. The GIDE varied markedly between tumours and related significantly to pretreatment levels of HER2 and changes in immunohistochemically detected Ki67.ConclusionOur findings identify the transcriptional signatures associated with aromatase inhibitor treatment of primary breast tumours. Larger datasets using this approach should enable identification of estrogen-dependent molecular changes, which are the determinants of benefit or resistance to endocrine therapy

    Systemic pro-inflammatory cytokine status following therapeutic hypothermia in a piglet hypoxia-ischemia model

    Get PDF
    BACKGROUND: Inflammatory cytokines are implicated in the pathogenesis of perinatal hypoxia-ischemia (HI). The influence of hypothermia (HT) on cytokines after HI is unclear. Our aim was to assess in a piglet asphyxia model, under normothermic (NT) and HT conditions: (i) the evolution of serum cytokines over 48 h and (ii) cerebrospinal fluid (CSF) cytokine levels at 48 h; (iii) serum pro/anti-inflammatory cytokine profile over 48 h and (iv) relation between brain injury measured by magnetic resonance spectroscopy (MRS) and brain TUNEL positive cells with serum cytokines, serum pro/anti-inflammatory cytokines and CSF cytokines. METHODS: Newborn piglets were randomized to NT (n = 5) or HT (n = 6) lasting 2-26 h after HI. Serum samples were obtained 4-6 h before, during and at 6-12 h intervals after HI; CSF was obtained at 48 h. Concentrations of interleukin (IL)-1beta, -4, -6, -8, -10 and TNF-alpha were measured and pro/anti-inflammatory status compared between groups. White matter and thalamic voxel lactate/N-acetyl aspartate (Lac/NAA) (a measure of both oxidative metabolism and neuronal loss) were acquired at baseline, after HI and at 24 and 36 h. RESULTS: Lac/NAA was reduced at 36 h with HT compared to NT (p = 0.013 basal ganglia and p = 0.033 white matter). HT showed lower serum TNF-alpha from baseline to 12 h (p < 0.05). Time-matched (acquired within 5 h of each other) serum cytokine and MRS showed correlations between Lac/NAA and serum IL-1beta and IL-10 (all p < 0.01). The pro/anti-inflammatory ratios IL-1beta/IL-10, IL-6/IL-10, IL-4/IL-10 and IL-8/IL-10 were similar in NT and HT groups until 36 h (24 h for IL-6/IL-10); after this, 36 h pro/anti-inflammatory cytokine ratios in the serum were higher in HT compared to NT (p < 0.05), indicating a pro-inflammatory cytokine surge after rewarming in the HT group. In the CSF at 48 h, IL-8 was lower in the HT group (p < 0.05). At 48 h, CSF TNF-alpha correlated with Lac/NAA (p = 0.02) and CSF IL-8 correlated with white matter TUNEL positive cell death (p = 0.04). CONCLUSIONS: Following cerebral HI, there was a systemic pro-inflammatory surge after rewarming in the HT group, which is counterintuitive to the putative neuroprotective effects of HT. While serum cytokines were variable, elevations in CSF inflammatory cytokines at 48 h were associated with MRS Lac/NAA and white matter cell death

    Sanctions and Democratization in the Post-Cold War Era

    Full text link

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society
    corecore