110 research outputs found

    Modelling extreme concentration from a source in a turbulent flow over rough wall

    No full text
    The concentration fluctuations in passive plumes from an elevated and a groundlevel source in a turbulent boundary layer over a rough wall were studied using large eddy simulation and wind tunnel experiment. The predictions of statistics up to second order moments were thereby validated. In addition, the trend of relative fluctuations far downstream for a ground level source was estimated using dimensional analysis. The techniques of extreme value theory were then applied to predict extreme concentrations by modelling the upper tail of the probability density function of the concentration time series by the Generalised Pareto Distribution. Data obtained from both the simulations and experiments were analysed in this manner. The predicted maximum concentration (?0) normalized by the local mean concentration (Cm) or by the local r.m.s of concentration fluctuation (crms), was extensively investigated. Values for ?0/Cm and ?0/crms as large as 50 and 20 respectively were found for the elevated source and 10 and 15 respectively for the ground-level source

    Comparative quantification of health risks: Conceptual framework and methodological issues

    Get PDF
    Reliable and comparable analysis of risks to health is key for preventing disease and injury. Causal attribution of morbidity and mortality to risk factors has traditionally been conducted in the context of methodological traditions of individual risk factors, often in a limited number of settings, restricting comparability. In this paper, we discuss the conceptual and methodological issues for quantifying the population health effects of individual or groups of risk factors in various levels of causality using knowledge from different scientific disciplines. The issues include: comparing the burden of disease due to the observed exposure distribution in a population with the burden from a hypothetical distribution or series of distributions, rather than a single reference level such as non-exposed; considering the multiple stages in the causal network of interactions among risk factor(s) and disease outcome to allow making inferences about some combinations of risk factors for which epidemiological studies have not been conducted, including the joint effects of multiple risk factors; calculating the health loss due to risk factor(s) as a time-indexed "stream" of disease burden due to a time-indexed "stream" of exposure, including consideration of discounting; and the sources of uncertainty

    Interventions Delivered in Clinical Settings are Effective in Reducing Risk of HIV Transmission Among People Living with HIV: Results from the Health Resources and Services Administration (HRSA)’s Special Projects of National Significance Initiative

    Get PDF
    To support expanded prevention services for people living with HIV, the US Health Resources and Services Administration (HRSA) sponsored a 5-year initiative to test whether interventions delivered in clinical settings were effective in reducing HIV transmission risk among HIV-infected patients. Across 13 demonstration sites, patients were randomized to one of four conditions. All interventions were associated with reduced unprotected vaginal and/or anal intercourse with persons of HIV-uninfected or unknown status among the 3,556 participating patients. Compared to the standard of care, patients assigned to receive interventions from medical care providers reported a significant decrease in risk after 12 months of participation. Patients receiving prevention services from health educators, social workers or paraprofessional HIV-infected peers reported significant reduction in risk at 6 months, but not at 12 months. While clinics have a choice of effective models for implementing prevention programs for their HIV-infected patients, medical provider-delivered methods are comparatively robust

    Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities

    Get PDF
    Currently, there are no air quality regulations in force in any part of the world to control number concentrations of airborne atmospheric nanoparticles (ANPs). This is partly due to a lack of reliable information on measurement methods, dispersion characteristics, modelling, health and other environmental impacts. Because of the special characteristics of manufactured (also termed engineered or synthesised) nanomaterials or nanoparticles (MNPs), a substantial increase is forecast for their manufacture and use, despite understanding of safe design and use, and health and environmental implications being in its early stage. This article discusses a number of underlining technical issues by comparing the properties and behaviour of MNPs with anthropogenically produced ANPs. Such a comparison is essential for the judicious treatment of the MNPs in any potential air quality regulatory framework for ANPs
    corecore