799 research outputs found

    The MEROPS Database

    Get PDF
    Many proteins undergo important post-translational proteolytic processing to remove targeting signals and activation peptides, and most proteins undergo proteolytic inactivation and catabolism. The enzymes that hydrolyse the peptide bonds in proteins and peptides are known as peptidases, proteases or proteolytic enzymes. The MEROPS database ("http://merops.sanger.ac.uk":http://merops.sanger.ac.uk) presents the classification and nomenclature of peptidases, their inhibitors and substrates. In 1993 we proposed the scheme for the classification of peptidases that has been internationally accepted, and in 1996 we established the MEROPS database. Protein inhibitors have been included in the database since 2004. About 2% of the genes in a genome encode peptidase homologues, and a further 1% encode protein inhibitors. For example, the human genome has 1037 genes encoding peptidase homologues (of which 643 are known or predicted to be active peptidases) and 433 protein inhibitor genes (of which 144 have been biochemically characterized as inhibitors). 

The MEROPS classification is hierarchical. Sequences are grouped into a peptidase species (each of which is given a unique identifier, for example C01.060 for cathepsin B); peptidase species are grouped into a family (for example C1); and families grouped into a clan (for example CA). To be included in the same protein species, sequences must be derived from the same node on a dendrogram derived from the family sequence alignment and known (or predicted) to share similar specificity. To be included in the same family sequences must be homologous over the sequence domain that contains the active site residues (peptidases) or reactive site (inhibitors). To be included in the same clan, the proteins must share similar tertiary structures (or the same linear arrangement of active site residues if the structure is unknown). Over 117,000 peptidase homologues are classified into 3114 protein species, 205 families and 52 clans, and 12,104 protein inhibitors are classified into 663 protein species, 64 families and 33 clans.

The database includes manually curated summaries for each clan, family and protein species. There are also sequence alignments and manually curated bibliographies (with over 41,000 references) at every level. In addition to protein inhibitors we also include 158 manually curated summaries for synthetic and naturally occurring small molecule inhibitors. There is also a summary page for each organism listing all known homologues and an analysis highlighting significant presences, absences or gene family expansions for organisms with a completely sequenced genome. 

The MEROPS database includes known peptidase substrates: naturally occurring peptides and proteins, and synthetic substrates. Currently there are 4091 cleavages of synthetic substrates and 95,413 cleavages of proteins (of which 74,740 are physiological). Cleavages in proteins are mapped to UniProt entries. An alignment of very close homologues of each substrate sequence is shown, highlighting residues around each cleavage site indicating whether the peptidase is known to accept the amino acid at that position or not. Cleavage sites that are conserved are likely to be physiological; cleavage sites that are not conserved may be pathological for the species in which they occur or coincidental.

The MEROPS data is freely available to download from our FTP site ("http://ftp.sanger.ac.uk/pub/MEROPS":http://ftp.sanger.ac.uk/pub/MEROPS) and via our Distributed Annotation System (DAS) server ("http://das.sanger.ac.uk/das/merops":http://das.sanger.ac.uk/das/merops).
&#xa

    Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Get PDF
    Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology

    Radio Astronomy

    Get PDF
    Contains reports on one research project.National Aeronautics and Space Administration (Grant NGL 22-009-016)National Aeronautics and Space Administration (Grant NGR 22-009-421)National Science Foundation Grant GP-2076

    MEROPS: the peptidase database

    Get PDF
    Peptidases (proteolytic enzymes) and their natural, protein inhibitors are of great relevance to biology, medicine and biotechnology. The MEROPS database () aims to fulfil the need for an integrated source of information about these proteins. The organizational principle of the database is a hierarchical classification in which homologous sets of proteins of interest are grouped into families and the homologous families are grouped in clans. The most important addition to the database has been newly written, concise text annotations for each peptidase family. Other forms of information recently added include highlighting of active site residues (or the replacements that render some homologues inactive) in the sequence displays and BlastP search results, dynamically generated alignments and trees at the peptidase or inhibitor level, and a curated list of human and mouse homologues that have been experimentally characterized as active. A new way to display information at taxonomic levels higher than species has been devised. In the Literature pages, references have been flagged to draw attention to particularly ‘hot’ topics

    Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas

    Get PDF
    Yellow fever virus (YFV) remains the cause of severe morbidity and mortality in South America and Africa. To determine the evolutionary history of this important reemerging pathogen, we performed a phylogenetic analysis of the largest YFV data set compiled to date, representing the prM/E gene region from 133 viral isolates sampled from 22 countries over a period of 76 years. We estimate that the currently circulating strains of YFV arose in Africa within the last 1,500 years and emerged in the Americas following the slave trade approximately 300–400 years ago. These viruses then spread westwards across the continent and persist there to this day in the jungles of South America. We therefore illustrate how gene sequence data can be used to test hypotheses of viral dispersal and demographics, and document the role of human migration in the spread of infectious disease

    A comparison of Pfam and MEROPS: Two databases, one comprehensive, and one specialised.

    Get PDF
    BACKGROUND: We wished to compare two databases based on sequence similarity: one that aims to be comprehensive in its coverage of known sequences, and one that specialises in a relatively small subset of known sequences. One of the motivations behind this study was quality control. Pfam is a comprehensive collection of alignments and hidden Markov models representing families of proteins and domains. MEROPS is a catalogue and classification of enzymes with proteolytic activity (peptidases or proteases). These secondary databases are used by researchers worldwide, yet their contents are not peer reviewed. Therefore, we hoped that a systematic comparison of the contents of Pfam and MEROPS would highlight missing members and false-positives leading to improvements in quality of both databases. An additional reason for carrying out this study was to explore the extent of consensus in the definition of a protein family. RESULTS: About half (89 out of 174) of the peptidase families in MEROPS overlapped single Pfam families. A further 32 MEROPS families overlapped multiple Pfam families. Where possible, new Pfam families were built to represent most of the MEROPS families that did not overlap Pfam. When comparing the numbers of sequences found in the overlap between a MEROPS family and its corresponding Pfam family, in most cases the overlap was substantial (52 pairs of MEROPS and Pfam families had an intersection size of greater than 75% of the union) but there were some differences in the sets of sequences included in the MEROPS families versus the overlapping Pfam families. CONCLUSIONS: A number of the discrepancies between MEROPS families and their corresponding Pfam families arose from differences in the aims and philosophies of the two databases. Examination of some of the discrepancies highlighted additional members of families, which have subsequently been added in both Pfam and MEROPS. This has led to improvements in the quality of both databases. Overall there was a great deal of consensus between the databases in definitions of a protein family

    Radio Astronomy

    Get PDF
    Contains research objectives and reports on one research project.National Aeronautics and Space Administration (Grant NsG-250-62)National Aeronautics and Space Administration (Grant NsG-419)Office of Naval Research (Contract Nonr-3963(02

    Radio Astronomy

    Get PDF
    Contains research objectives and reports on two research projects.National Aeronautics and Space Administration (Grant NsG-250-62)National Aeronautics and Space Administration (Grant NsG-419)U. S. Navy (Office of Naval Research) under Contract Nonr-3963(02)-Task 2Lincoln Laboratory, Purchase Order DDL BB-107U. S. Air Force under Contract AF 19(628)-50

    Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases

    Get PDF
    AbstractWe show by site-directed mutagenesis that the catalytic residues of mammalian legumain, a recently discovered lysosomal asparaginycysteine endopeptidase, form a catalytic dyad in the motif His-Gly-spacer-Ala-Cys. We note that the same motif is present in the caspases, aspartate-specific endopeptidases central to the process of apoptosis in animal cells, and also in the families of clostripain and gingipain which are arginyl/lysyl endopeptidases of pathogenic bacteria. We propose that the four families have similar protein folds, are evolutionarily related in clan CD, and have common characteristics including substrate specificities dominated by the interactions of the S1 subsite

    Inhaled methoxyflurane (Penthrox®) versus placebo for injury-associated analgesia in children - The MAGPIE trial (MEOF-002): Study protocol for a randomised controlled trial

    Get PDF
    BackgroundPain from injuries is one of the commonest symptoms in children attending emergency departments (EDs), and this is often inadequately treated in both the pre-hospital and ED settings, in part due to challenges of continual assessment and availability of easily administered analgesic options. Pain practices are therefore a key research priority, including within the field of paediatric emergency medicine. Methoxyflurane, delivered via a self-administered Penthrox® inhaler, belongs to the fluorinated hydrocarbon group of volatile anaesthetics and is unique among the group in having analgesic properties at low doses. Despite over 30 years of clinical acute analgesia use, and a large volume of evidence supporting its safety and efficacy, there is a paucity of randomised controlled trial data for Penthrox®.MethodsThis is an international multi-centre randomised, double-blind, placebo-controlled phase III trial assessing the efficacy and safety of methoxyflurane delivered via the Penthrox® inhaler for the management of moderate to severe acute traumatic pain in children and young people aged 6–17 years. Following written informed consent, eligible participants are randomised to self-administer either inhaled methoxyflurane (maximum dose of 2 × 3 ml) or normal saline placebo (maximum dose 2 × 5 ml). Patients, treating clinicians and research nurses are blinded to the treatment. The primary outcome is the change in pain intensity at 15 min after the commencement of treatment, as measured by the Visual Analogue Scale (VAS) or the Wong-Baker FACES® Pain Rating scale, with the latter converted to VAS values. Secondary outcome measures include the number and proportion of responders who achieve a 30% reduction in VAS score compared to baseline, rescue medication requested, time and number of inhalations to first pain relief, global medication performance assessment by the patient, clinician and research nurse, and evaluation of adverse events experienced during treatment and during the subsequent 14 ± 2 days. The primary analysis will be by intention to treat. The total sample size is 110 randomised and treated patients per treatment arm.DiscussionThe Methoxyflurane AnalGesia for Paediatric InjuriEs (MAGPIE) trial will provide efficacy and safety data for methoxyflurane administered via the Penthrox® inhaler, in children and adolescents who present to EDs with moderate to severe injury-related pain.Trial registrationEudraCT, 2016–004290-41. Registered on 11 April 2017.ClinicalTrials.gov, NCT03215056. Registered on 12 July 2017
    corecore