III. RADIO ASTRONOMY^{*}

Academic and Research Staff

Prof. A. H. Barrett Prof. B. F. Burke Prof. R. M. Price	Prof. D. H. Staelin Dr. K. F. Kunzi Dr. G. D. Papadopoulos Dr. J. W. Waters Graduate Students	J. W. Barrett D. C. Papa S. J. Savatsky
B. G. Anderson	C. A. Knight	P. C. Myers
K. P. Bechis P. C. Crane P. L. Kebabian	K-S. Lam K-Y. Lo R. N. Martin	R. M. Paroski R. K. L. Poon J. H. Spencer
V. T. Kjartansson		A. R. Whitney

A. STUDIES OF WATER-VAPOR MICROWAVE EMISSION FROM INFRARED STARS

An observational study of water-vapor microwave emission from infrared stars is being conducted with the Haystack 120-ft antenna. The observations include a search for new stellar H_2O emitters (at 22.235 GHz), and regular monitoring of known stellar H_2O emitters for time variations in peak fluxes. We are searching among all stars with negative K magnitudes listed in the California Institute of Technology Two-Micron Sky Survey.¹ All known stellar H_2O microwave emitters, except NML Cyg, have negative K magnitudes, and this is the major criterion for our source selection. We are also searching among long-period variable stars at maximum light.

Thus far we have detected H_2O emission in NML Tau(IRC+10050), RCrt(IRC-20222), both of which had been observed earlier with negative results, IRC-30182, and RR Aql (IRC+00458). The H_2O emission feature in NML Tau is at +24.7 km/s (with respect to LSR), with an antenna temperature of 2.3°K, on March 27, 1972. The H_2O emission in R Crt has been resolved into three components extending over a velocity range from +12.5 km/s to +19.3 km/s, with the main feature at +18.5 km/s; the antenna temperature of the main feature was 8°K on March 26, 1972. The emission feature in IRC-30182 is at +15.9 km/s, with an antenna temperature of 1.6°K. The emission feature in RR Aql is at +27.9 km/s, with an antenna temperature of 1°K.

We have observed significant time variations in peak H_2O spectral-line fluxes from some of these infrared stars, including the recently discovered NML Tau and R Crt. We will also be able to compare these microwave flux variations with variations in the infrared fluxes.² We hope that this will give us additional clues to the physical processes involved in these unusual objects.

^{*}This work was supported by the National Aeronautics and Space Administration (Grants NGL 22-009-016 and NGR 22-009-421) and by the National Science Foundation Grant GP-20769.

A paper on this work will be presented at the 137th Meeting of the American Astronomical Society, in April 1972, and we are also preparing a longer paper for publication.

A. H. Barrett, K. P. Bechis, D. F. Dickinson [Dr. D. F. Dickinson is at the Smithsonian Astrophysical Observatory, Cambridge, Massachusetts.]

References

- 1. G. Neugebauer and R. B. Leighton, <u>Two-Micron</u> <u>Sky</u> <u>Survey A</u> <u>Preliminary</u> Catalog (NASA SP-3047, Washington, D.C., 1969).
- 2. P. Harvey, G. Neugebauer, and E. Becklin, Department of Astronomy and Physics, California Institute of Technology, Private communication, 1972.