1,857 research outputs found

    Structural anomalies for a three dimensional isotropic core-softened potential

    Full text link
    Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter, t, a local maximum at a density ρtmax\rho_{t-max} and a local minimum at ρtmin>ρtmax\rho_{t-min} > \rho_{t-max}. Between ρtmax\rho_{t-max} and ρtmin\rho_{t-min}, the tt parameter anomalously decreases upon pressure. For the orientational order parameter, Q6Q_6, was observed a maximum at a density ρtmax<ρQmax<ρtmin\rho_{t-max}< \rho_{Qmax} < \rho_{t-min}. For densities between ρQmax\rho_{Qmax} and ρtmin\rho_{t-min}, both the translational (t) and orientational (Q6Q_6) order parameters have anomalous behavior. We know that this system also exhibits density and diffusion anomaly. We found that the region in the pressure-temperature phase-diagram of the structural anomaly englobes the region of the diffusion anomaly that is larger than the region limited by the temperature of maximum density. This cascade of anomalies (structural, dynamic and thermodynamic) for our model has the same hierarchy of that one observed for the SPC/E water.Comment: 19 pages, 8 figure

    Diffusion behavior of water confined in deformed carbon nanotubes

    Full text link
    We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes, with different degrees of eccentricity at 300K. We found a water structural transition between tubular-like to single-file for the (7,7) nanotubes associated with a change from a high to low mobility regimes. The water which in the undeformed (9,9) nanotubes is frozen, becomes liquid for the distortion above a certain threshold. These water diffusion enhancement (suppresion) is related to a reduction (increase) in the number of hydrogen bonds. This suggests that the shape of the nanotube is a particularly important ingredient when considering the dynamical and structural properties of confined water.Comment: 16 pages, 9 figure

    Liquid crystal phase and waterlike anomalies in a core-softened shoulder-dumbbells system

    Get PDF
    Using molecular dynamics we investigate the thermodynamics, dynamics and structure of 250 diatomic molecules interacting by a core-softened potential. This system exhibits thermodynamics, dynamics and structural anomalies: a maximum in density-temperature plane at constante pressure and maximum and minimum points in the diffusivity and translational order parameter against density at constant temperature. Starting with very dense systems and decreasing density the mobility at low temperatures first increases, reach a maximum, then decreases, reach a minimum and finally increases. In the pressure-temperature phase diagram the line of maximum translational order parameter is located outside the line of diffusivity extrema that is enclosing the temperature of maximum density line. We compare our results with the monomeric system showing that the anisotropy due to the dumbbell leads to a much larger solid phase and to the appearance of a liquid crystal phase. the double ranged thermodynamic and dynamic anomalies.Comment: 14 pages, 5 figure

    Ponderomotive and resonant effects in the acceleration of particles by electromagnetic modes

    Get PDF
    Funding: U.K. Science and Engineering Research Council under Grant No. EP/N028694/1 (R.A.C.).In the present analysis, we study the dynamics of charged particles under the action of slowly modulated electromagnetic carrier waves. With the use of a high-frequency laser mode along with a modulated static magnetic wiggler, we show that the ensuing total field effectively acts as a slowly modulated high-frequency beat-wave field typical of inverse free-electron laser schemes. This effective resulting field is capable of accelerating particles in much the same way as space-charge wake fields do in plasma accelerators, with the advantage of being more stable than plasma related methods. Acceleration occurs as particles transition from ponderomotive to resonant regimes, so we develop the ponder- omotive formalism needed to examine this problem. The ponderomotive formalism includes terms that, although not discussed in the usual applications of the approximation, are nevertheless of crucial importance in the vicinity of resonant capture. The role of these terms is also briefly discussed in the context of generic laser-plasma interactions.PostprintPeer reviewe

    Water diffusion in carbon nanotubes for rigid and flexible models

    Full text link
    We compared the diffusion of water confined in armchair and zigzag carbon nanotubes for rigid and flexible water models. Using one rigid model, TIP4P/2005, and two flexible models, SPC/Fw and SPC/FH, we found that the number of the number of hydrogen bonds that water forms depends on the structure of the nanotube, directly affecting the diffusion of water. The simulation results reveal that due to the hydrophobic nature of carbon nanotubes and the degrees of freedom imposed by the water force fields, water molecules tend to avoid the surface of the carbon nanotube. This junction of variables plays a central role in the diffusion of water, mainly in narrow and/or deformed nanotubes, governing the mobility of confined water in a non-trivial way, where the greater the degree of freedom of the water force field, the smaller it will be mobility in confinement, as we limit the competition between area/volume, and it no longer plays the unique role in changing water diffusivity.Comment: 28 pages, 6 figure

    Heterogeneous Responses to Antioxidants in Noradrenergic Neurons of the Locus Coeruleus Indicate Differing Susceptibility to Free Radical Content

    Get PDF
    The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies

    Heterogeneous Responses to Antioxidants in Noradrenergic Neurons of the Locus Coeruleus Indicate Differing Susceptibility to Free Radical Content

    Get PDF
    The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies
    corecore