4 research outputs found

    Cross-Resistance to Abiraterone and Enzalutamide in Castration Resistance Prostate Cancer Cellular Models Is Mediated by AR Transcriptional Reactivation

    Get PDF
    Androgen deprivation therapy (ADT) and novel hormonal agents (NHAs) (Abiraterone and Enzalutamide) are the goal standard for metastatic prostate cancer (PCa) treatment. Although ADT is initially effective, a subsequent castration resistance status (CRPC) is commonly developed. The expression of androgen receptor (AR) alternative splicing isoforms (AR-V7 and AR-V9) has been associated to CRPC. However, resistance mechanisms to novel NHAs are not yet well understood. Androgen-dependent PCa cell lines were used to generate resistant models to ADT only or in combination with Abiraterone and/or Enzalutamide (concomitant models). Functional and genetic analyses were performed for each resistance model by real-time cell monitoring assays, flow cytometry and RT-qPCR. In androgen-dependent PCa cells, the administration of Abiraterone and/or Enzalutamide as first-line treatment involved a critical inhibition of AR activity associated with a significant cell growth inhibition. Genetic analyses on ADT-resistant PCa cell lines showed that the CRPC phenotype was accompanied by overexpression of AR full-length and AR target genes, but not necessarily AR-V7 and/or AR-V9 isoforms. These ADT resistant cell lines showed higher proliferation rates, migration and invasion abilities. Importantly, ADT resistance induced cross-resistance to Abiraterone and/or Enzalutamide. Similarly, concomitant models possessed an elevated expression of AR full-length and proliferation rates and acquired cross-resistance to its alternative NHA as second-line treatment.Instituto de Salud Carlos III PI17/00989European Regional Development Fund "A way to build Europe"Ramon y Cajal - Ministry of Economy and Competitiveness RYC-2015-18382Ministry of Education, Culture and Sport FPU14/05461University of Granad

    Cancer Genes Hypermethylated in Human Embryonic Stem Cells

    Get PDF
    Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation

    Exchange of cellular components between platelets and tumor cells: impact on tumor cells behavior.

    No full text
    Background: Platelets are active players in tumorigenesis, although the exact interactive mechanisms and their direct impact on tumor cells remain largely unknown. Methods: Bidirectional transference of lipids, proteins and RNA between platelets and tumor cells and its impact on tumor cell behavior and tumor process are analyzed in this work. Phenotypic, genetic and functional modifications induced by platelets were analyzed both in tumor cell lines and in circulating tumor cells (CTCs). Results: Data from these assays showed that platelets transferred structural components to tumor cells with higher efficiency than tumor cells to platelets (p = 0.001). This biological interplay occurred by direct contact, internalization or via extracellular vesicles. As a result, tumor cells acquired platelet markers (CD61 and CD42), showed decreased EpCAM, expressed epithelial-to-mesenchymal transition markers, and increased proliferation rates. Moreover, we were able to detect CD61 in CTCs from early and advanced prostate cancer. Conclusions: Our results demonstrated, for the first time, that platelets educate tumor cells by highly efficient transference of lipids, proteins and RNA through different mechanisms. These results suggest that tumor cells and CTCs might acquire highly dynamic and aggressive phenotypes due to platelets interaction including EMT, stem-like phenotype and high proliferative rates
    corecore