41 research outputs found

    Prediction of thermal and energy transport of MHD Sutterby hybrid nanofluid flow with activation energy using Group Method of Data Handling (GMDH)

    Get PDF
    The present research work pursues GMDH for predicting thermal and energy transport of 2-D radiative magnetohydrodynamic (MHD) flow of hybrid Sutterby nanofluid across a moving wedge with activation energy. An exclusive class of nanoparticles SWCNT-Fe(3)O(4 )and MWCNT-Fe3O4 are dispersed into the ethylene glycol as regular fluid. The hybrid nanofluid mathematical model has been written as a system of partial differential equations (PDEs), which are then converted into ordinary differential equations (ODEs) through similarity replacements. Numerical solutions are attained Runge-Kutta-Fehlberg's fourth fifth-order (RKF-45) scheme by adopting the shooting technique. The ranges of diverse sundry parameters used in our study are Hartree parameter 0.1 <= m <= 0.5, magnetic parameter 0.3 <= M <= 1, Deborah number 0.1 <= De <= 1, moving wedge parameter 0.3 <= gamma <= 0.9, Reynolds number 0 <= Re <= 2.5, solid volume fraction of Fe3O4 and CNTs0.005 <= phi(1) <= 0.1,0.005 <= phi(2) <= 0.06, Browanian motion 0.1 <= Nb <= 0.4, thermophoresis parameter 0.1 <= Nt <= 0.25, Eckeret number 0.05 <= Ec <= 1, radiation parameter 1 <= R-d <= 2.5, Lewis number 0.5 <= Le <= 1.5, chemical reaction rate 0.1 <= sigma <= 0.7, heat source parameter, 0 <= delta <= 1.5 and activation energy 1 <= E <= 4 which shows up during the speed, thermal, and focus for Fe3O4/C2H6O2 nanofluid and CNTs-Fe3O4/C2H6O2 hybrid nanofluid. Additionally, the friction coefficient (C-fx), rate of heat transport (H-tx), and rate of nanoparticle transport (Nt(x) are calculated using GMDH. The numerical results for the current analysis are illustrated via tables, graphs, and contour plots. The efficiency of the proposed GMDH models is assessed using statistical measures such as MSE, MAE, RMSE, R, Error mean and Error StD. The predicted values are very close to the numerical results, and the coefficient of determination R-2 of C-fx,N-tx, and H-tx are 1, 0.97836 and 0.9960, respectively, which shows the best settlement

    Emerging wireless communication technologies in Iraqi government: Exploring cloud, edge, and fog computing

    Get PDF
    This study aims to structure the implementation of a governmental cloud of things (CoT), edge computing (EC), and fog computing in Iraq in the context of sustainable wireless communication. A base of literature was built that included any challenges, opportunities, and best practices relevant to these innovative technologies to set up the background for this paper. A concept model was created that included core components (cognitive technologies and fog computing), key processes (resource analysis, infrastructure design), and stakeholders (governments, industry, community). A strategic methodology made up of stakeholder involvement, capacity building, and pilot projects was used in the project. Concerning IoT planned deployment and services provision, network infrastructure was put in place to support the devices and a higher level of security measures were recommended. Using scenario hypothesis, MATLAB simulator was employed to simulate data value distribution as well as received power distribution based on different institutions for 12 months. Monitoring and evaluation should be followed to measure performance indicators and effects on this process. Continuously improvement strategies were the highlight of the session which further stimulated innovations. Acquainted projects will be put in the function to extend the range of activities by including additional government agencies, regions, or sectors. Reporting of the collected data and funding will be done with stakeholders to share and pool knowledge

    Impact of Brine Composition and Concentration on Capillary Pressure and Residual Oil Saturation in Limestone Core Samples

    Get PDF
    Low salinity water flooding (LSF) is a relatively simple and cheap EOR technique in which the salinit y of the injected water is optimized (by desalination and/or modification) to improve oil recovery over conventional waterflooding. Extensive laboratory experiments investigating the effect of LSF are available in the literature. Sulfate-rich as well as diluted brines have shown promising potential to increase oil production in limestone core samples. To quantify the low salinity effect, spontaneous imbibition and/or tertiary waterflooding experiments have been reported. For the first time in literature, this paper presents a comprehensive study of the centrifuge technique to investigate low salinity effect in carbonate samples. The study is divided into three parts. At first, a comprehensive screening was performed on the impact of different connate water and imbibition brine compositions/combinations on the spontaneous imbibition behavior. Second, the subsequent forced imbibition of the samples using the centrifuge method to investigate the impact of brine compositions on residual saturations and capillary pressure. Finally, three unsteady-state (USS) core floodings were conducted in order to examine the potential of the different brines to increase oil recovery in secondary mode (brine injection at connate water saturation) and tertiary mode (exchange of injection brine at mature recovery stage). The experiments were performed using Indiana limestone outcrops. The main conclusions of the study are spontaneous imbibition experiments only showed oil recovery in case the salinity of the imbibing water (IW) is lower than the salinity of the connate water (CW). No oil production was observed when the imbibing water had a higher salinity than the connate water or the salinity of the connate water and imbibing brine were identical. Moreover, the spontaneous imbibition experiments indicated that diluting the salinity of the imbibing water has a larger potential to spontaneously recover oil than the introduction of sulfate-rich sea water. The centrifuge experiments confirmed a connection between the overall salinity and oil recovery. As the salinity of the imbibing brines decreases, the capillary imbibition pressure curves showed an increasing water-wetting tendency and simultaneous reduction of the remaining oil saturation. The lowest remaining oil saturation was obtained for diluted sea water as CW and IW. The core flooding experiments reflected the results of the spontaneous imbibition and centrifuge experiments. Injecting brine at a rate of 0.05 cc/min, sea water and especially diluted sea water resulted in a significant higher oil recovery compared to formation brine. Moreover, when comparing secondary mode experiments, the remaining oil saturation after flooding by diluted sea water, sea water and formation water was 30.6 %, 35.5 % and 37.4 %, respectively. In tertiary injection mode, sea water did not lead to extra oil recovery while diluted sea water led to an additional oil recovery of 5.6 % in one out of two tertiary injection applications

    MINI FACTORY

    Full text link
    The project focuses on designing and operating a mini factory using standard and customized Festo components. The project shows the integration of various components to create a flexible manufacturing system. The goal of this project is to build a small factory that can make customized products. The current product to be manufactured is a box containing a ring and a keychain with the Abu Dhabi Polytechnic logo. The mini factory consists of processing, handling, and pick-and-place stations. The purpose of the project is to improve and confirm students’ skills in the field of industrial automation and Industry 4.0 via the simulation and implementation of the production process, therefore, the project contributes to learning how products are designed and manufactured. The organizational goals of the project are lab equipment development, customization and upgrade for support of the mechatronics program and to build a demonstration solution for exhibitions and fairs with the feature to give visitors customized products with the organization logo which leads to the organization's promotion and recognition

    Dielectric loss of boron-based dielectrics on niobium resonators

    Get PDF
    Advanced solid-state quantum bits (qubits) are likely to require a variety of dielectrics for wiring crossovers, substrates, and Josephson junctions. Microwave superconducting resonators are an excellent tool for measuring the internal dielectric loss of materials. We report the dielectric loss of boron-based dielectric films using a microwave coplanar waveguide (CPW) resonator with heterostructure geometry. Power-dependent internal quality factors of magnetron-sputtered boron carbide ( B4C ) and boron nitride (BN) were measured and are compared to silicon oxide ( SiO2 ), a common material used in wiring crossovers. The internal dielectric loss due to two-level systems for B4C , and BN is less than silicon dioxide ( SiO2 ), which demonstrates the existence of low-loss sputtered materials. We also found that niobium (Nb) CPW resonators suffer a decrease in internal quality factor after deposition of B4C at temperatures above 150 ∘C . This result is consistent with the idea that the oxidation of the surface of the superconducting metal can contribute to loss in a device

    An Evaluation of Prediction Equations for the 6 Minute Walk Test in Healthy European Adults Aged 50-85 Years

    Get PDF
    This study compared actual 6 minute walk test (6MWT) performance with predicted 6MWT using previously validated equations and then determined whether allometric modelling offers a sounder alternative to estimating 6MWT in adults aged 50-80 years.We compared actual 6MWT performance against predicted 6MWT in 125 adults aged 50-85 years (62 male, 63 female). In a second sample of 246 adults aged 50-85 years (74 male, 172 female), a new prediction equation for 6MWT performance was developed using allometric modelling. This equation was then cross validated using the same sample that the other prediction equations were compared with.Significant relationships were evident between 6MWT actual and 6MWT predicted using all of the commonly available prediction equations (all P<0.05 or better) with the exception of the Alameri et al prediction equation (P>0.05). A series of paired t-tests indicated significant differences between 6MWT actual and 6MWT predicted for all available prediction equations (all P<0.05 or better) with the exception of the Iwama et al equation (P = .540). The Iwama et al equation also had similar bias (79.8m) and a coefficient of variation of over 15%. Using sample 2, a log-linear model significantly predicted 6MWT from the log of body mass and height and age (P = 0.001, adjusted R2 = .526), predicting 52.6% of the variance in actual 6MWT. When this allometric equation was applied to the original sample, the relationship between 6MWT actual and 6MWT predicted was in excess of values reported for the other previously validated prediction equations (r = .706, P = 0.001). There was a significant difference between actual 6MWT and 6MWT predicted using this new equation (P = 0.001) but the bias, standard deviation of differences and coefficient of variation were all less than for the other equations.Where actual assessment of the 6MWT is not possible, the allometrically derived equation presented in the current study, offers a viable alternative which has been cross validated and has the least SD of differences and smallest coefficient of variation compared to any of the previously validated equations for the 6MWT

    High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: the UAE Healthy Future Study

    Get PDF
    BackgroundCardiovascular disease (CVD) is the leading cause of death in the world. In the United Arab Emirates (UAE), it accounts for 40% of mortality. CVD is caused by multiple cardiometabolic risk factors (CRFs) including obesity, dysglycemia, dyslipidemia, hypertension and central obesity. However, there are limited studies focusing on the CVD risk burden among young Emirati adults. This study investigates the burden of CRFs in a sample of young Emiratis, and estimates the distribution in relation to sociodemographic and behavioral determinants.MethodsData was used from the baseline data of the UAE Healthy Future Study volunteers. The study participants were aged 18 to 40 years. The study analysis was based on self-reported questionnaires, anthropometric and blood pressure measurements, as well as blood analysis.ResultsA total of 5167 participants were included in the analysis; 62% were males and the mean age of the sample was 25.7 years. The age-adjusted prevalence was 26.5% for obesity, 11.7% for dysglycemia, 62.7% for dyslipidemia, 22.4% for hypertension and 22.5% for central obesity. The CRFs were distributed differently when compared within social and behavioral groups. For example, obesity, dyslipidemia and central obesity in men were found higher among smokers than non-smokers (p \u3c 0.05). And among women with lower education, all CRFs were reported significantly higher than those with higher education, except for hypertension. Most CRFs were significantly higher among men and women with positive family history of common non-communicable diseases.ConclusionsCRFs are highly prevalent in the young Emirati adults of the UAE Healthy Future Study. The difference in CRF distribution among social and behavioral groups can be taken into account to target group-specific prevention measures

    The interrelationship and accumulation of cardiometabolic risk factors amongst young adults in the United Arab Emirates: The UAE Healthy Future Study.

    Get PDF
    INTRODUCTION: Similar to other non-communicable diseases (NCDs), people who develop cardiovascular disease (CVD) typically have more than one risk factor. The clustering of cardiovascular risk factors begins in youth, early adulthood, and middle age. The presence of multiple risk factors simultaneously has been shown to increase the risk for atherosclerosis development in young and middle-aged adults and risk of CVD in middle age. OBJECTIVE: This study aimed to address the interrelationship of CVD risk factors and their accumulation in a large sample of young adults in the United Arab Emirates (UAE). METHODS: Baseline data was drawn from the UAE Healthy Future Study (UAEHFS), a volunteer-based multicenter study that recruits Emirati nationals. Data of participants aged 18 to 40 years was used for cross-sectional analysis. Demographic and health information was collected through self-reported questionnaires. Anthropometric data and blood pressure were measured, and blood samples were collected. RESULTS: A total of 5126 participants were included in the analysis. Comorbidity analyses showed that dyslipidemia and obesity co-existed with other cardiometabolic risk factors (CRFs) more than 70% and 50% of the time, respectively. Multivariate logistic regression analysis of the risk factors with age and gender showed that all risk factors were highly associated with each other. The strongest relationship was found with obesity; it was associated with four-fold increase in the odds of having central obesity [adjusted OR 4.70 (95% CI (4.04-5.46)], and almost three-fold increase odds of having abnormal glycemic status [AOR 2.98 (95% (CI 2.49-3.55))], hypertension (AOR 3.03 (95% CI (2.61-3.52))] and dyslipidemia [AOR 2.71 (95% CI (2.32-3.15)]. Forty percent of the population accumulated more than 2 risk factors, and the burden increased with age. CONCLUSION: In this young population, cardiometabolic risk factors are highly prevalent and are associated with each other, therefore creating a heavy burden of risk factors. This forecasts an increase in the burden of CVD in the UAE. The robust longitudinal design of the UAEHFS will enable researchers to understand how risk factors cluster before disease develops. This knowledge will offer a novel approach to design group-specific preventive measures for CVD development
    corecore