49 research outputs found

    fac-Tris(4-amino­benzohydroxamato)iron(III) ethanol solvate

    Get PDF
    In the structure of the title compound, [Fe(C7H7N2O2)3]·CH3CH2OH, the FeIII atom is in a distorted octa­hedral O6 environment with the three hydroxamate O atoms (and the three carbonyl O atoms) arranged in a fac configuration and one of the hydroxamate ligands being puckered. The methyl C atom of the ethanol solvent mol­ecule is disordered over two positions with occupancies of 0.626 (13) and 0.374 (13), respectively. The cocrystallized ethanol mol­ecule is hydrogen bonded to one of the hydroxamate O atoms. O—H⋯O and N—H⋯O inter­actions generate infinite three-dimensional networks along [100], [010] and [001]

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Modeling of Groundwater Level in Coastal Aquifers Using Artificial Neural Networks – Gaza Costal Aquifer as Case Study

    No full text
    Gaza coastal aquifer (GCA) is the most precious natural source in Gaza Strip where it is the only source of water for different uses. The extraction of groundwater currently exceeds the aquifer recharge rate; as a result, the groundwater level (GWL) is falling continuously. Therefore, forecasting of GWL is one of the most important requirements for effective management of groundwater. The undertaken research is concerned with the development of GWL model using Artificial Neural Networks (ANNs). The applicability of the developed ANNs models in simulating GWL was investigated for a part GCA. In this study, dependent variable used in the developed ANNs model were the initial GWL, recharge from different source such as rainfall, recharge from return flow from both water and wastewater networks systems, recharge from return flow from irrigation water, abstraction from both municipal wells and agricultural wells. The aforementioned input variables were used to predict GWL at 17 monitoring wells which distributed over all study area. The performance of the best ANNs model was satisfactory where the correlation between the observed and predicted values of GWL was 0.993. Moreover, ANNs model was utilized as a decision support tool by considering two future abstraction scenarios

    Effect of different gingival margin restorations of class II cavities on microleakage: an in-vitro study

    No full text
    Introduction: Microleakage is one of the important contributing factors in the failure of resin restorations. The aim of this study was to determine the effect of the location of the gingival margin (enamel, dentin, or cementum) on nanohybrid composite resin on the microleakage of Class II posterior restoration. Methods: This was an in vitro study done at Al-Farabi College of Dentistry and Nursing in Jeddah (Saudi Arabia). Eighty-one previously extracted human molars were taken from clinics at Al-Farabi College and divided into three main groups (27 each) according to the location of the gingival margin. Group 1: the location of the gingival margin was in the enamel. Group 2: at the cemento-enamel junction. Group 3: in the cementum. Each main group was divided into three subgroups (9 each) according to storage time. Subgroup A: storage time was 24 hours. Subgroup B: storage time was one month. Subgroup C: storage time was three months. Class II cavity was prepared in one proximal surface for each molar following the general principles of cavity preparation. All samples were restored by nanohybridresin composite (TetricEvoCeram). The specimens were stored in distilled water at 37 oC and a humidity of 100% in an incubator for one day, one month, and three months, respectively, according to the subgroups. After sealing, the samples were stained with 2.5% methylene blue dye. Each sample was examined microscopically by a stereomicroscope using a computerized image analyzing system. Statistical analysis was done by two-way ANOVA test comparing dye penetration mean values (µm). Results: The value of dye penetration increased remarkably from enamel, Cemento-enamel junction [CEJ] to cementum, and this was statistically significant (p < 0.001). Conclusion: None of the materials tested was able to completely eliminate marginal microleakage at different gingival margins. The least dye penetration was detected at the enamel gingival margin followed by CEJ and then cementum. The least microleakage was observed at the gingival margin located in the enamel

    Suitability of SBR for Wastewater Treatment and Reuse: Pilot-Scale Reactor Operated in Different Anoxic Conditions

    No full text
    The present study investigates the performance of a pilot-scale Sequencing Batch Reactor (SBR) process for the treatment of wastewater quality parameters, including turbidity, total suspended solids (TSS), total solids (TS), nitrogen (ammonia (NH3&ndash;N), nitrite (NO2&minus;), and nitrate (NO3&minus;), phosphate (PO43&minus;), the chemical oxygen demand (COD), and the 5-day biological oxygen demand (BOD5), from municipal wastewater. Two scenarios, namely, pre-anoxic denitrification and post-anoxic denitrification, were investigated to examine the performance of a pilot-scale SBR on the wastewater quality parameters, particularly the nitrogen removal. The correlation statistic was applied to explain the effects of operational parameters on the performance of the SBR system. The results revealed that the post-anoxic denitrification scenario was more efficient for higher qualify effluent than the first scenario. The effluent concentrations of the targeted wastewater quality parameters obtained for the proposed SBR system were below those of the local standards, while its performance was better than that of the North Sewage Treatment Plant, Dharan, Eastern province, Kingdom of Saudi Arabia (KSA), in terms of the BOD5, COD, TN, and PO43- treatment efficiencies. These results indicated the suitability of SBR technology for wastewater treatment in remote areas in the KSA, with a high potential of reusability for sustainable wastewater management

    Solar Energy -- A Look into Power Generation, Challenges, and a Solar-Powered Future

    No full text
    Sun is an inexhaustible source of energy capable of fulfilling all the energy needs of humankind. The energy from the sun can be converted into electricity or used directly. Electricity can be generated from solar energy either directly using photovoltaic (PV) cells or indirectly using concentrated solar power (CSP) technology. Progress has been made to raise the efficiency of the PV solar cells that can now reach up to approximately 34.1% in multi-junction PV cells. Electricity generation from concentrated solar technologies has a promising future as well, especially the CSP, because of its high capacity, efficiency, and energy storage capability. Solar energy also has direct application in agriculture primarily for water treatment and irrigation. Solar energy is being used to power the vehicles and for domestic purposes such as space heating and cooking. The most exciting possibility for solar energy is satellite power station that will be transmitting electrical energy from the solar panels in space to Earth via microwave beams. Solar energy has a bright future because of the technological advancement in this field and its environment-friendly nature. The biggest challenge however facing the solar energy future is its unavailability all-round the year, coupled with its high capital cost and scarcity of the materials for PV cells. These challenges can be met by developing an efficient energy storage system and developing cheap, efficient, and abundant PV solar cells. This article discusses the solar energy system as a whole and provides a comprehensive review on the direct and the indirect ways to produce electricity from solar energy and the direct uses of solar energy. The state-of-the-art procedures being employed for PV characterization and performance rating have been summarized. Moreover, the technical, economic, environmental, and storage-related challenges are discussed with possible solutions. Furthermore, a comprehensive list of future potential research directions in the field of direct and indirect electricity generation from solar energy is proposed
    corecore