22 research outputs found

    Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites

    Get PDF
    Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune respons

    STEM nanoanalysis of Au/Pt/Ti-Si3N4 interfacial defects and reactions during local stress of SiGe HBTs

    Get PDF
    A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM) analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si3N4 interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer

    Molecular characterization of Neospora caninum MAG1, a dense granule protein secreted into the parasitophorous vacuole, and associated with the cyst wall and the cyst matrix

    Get PDF
    SUMMARY: In Neospora caninum and Toxoplasma gondii, the parasitophorous vacuole (PV) is synthesized at the time of infection. During tachyzoite-to-bradyzoite stage conversion, the PV is later transformed into a tissue cyst that allows parasites to survive in their host for extended periods of time. We report on the characterization of NcMAG1, the N. caninum orthologue of T. gondii MAG1 (matrix antigen 1; TgMAG1). The 456 amino acid predicted NcMAG1 protein is 54% identical to TgMAG1. By immunoblotting, a rabbit antiserum raised against recombinant NcMAG1 detected a major product of approximately 67 kDa in extracts of N. caninum tachyzoite-infected Vero cells, which was stained more prominently in extracts of infected Vero cells treated to induce in vitro bradyzoite conversion. Immunofluorescence and TEM localized the protein mainly within the cyst wall and the cyst matrix. In both tachyzoites and bradyzoites, NcMAG1 was associated with the parasite dense granules. Comparison between NcMAG1 and TgMAG1 amino acid sequences revealed that the C-terminal conserved regions exhibit 66% identity, while the N-terminal variable regions exhibit only 32% identity. Antibodies against NcMAG1-conserved region cross-reacted with the orthologuous protein in T. gondii but those against the variable region did not. This indicates that the variable region possesses unique antigenic characteristics

    Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites

    Get PDF
    Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response

    STEM nanoanalysis of Au/Pt/Ti-Si<sub>3</sub>N<sub>4 </sub>interfacial defects and reactions during local stress of SiGe HBTs

    No full text
    <p>Abstract</p> <p>A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM) analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si<sub>3</sub>N<sub>4 </sub>interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer.</p

    Degradation of Au–Ti contacts of SiGe HBTs during electromagnetic field stress

    No full text
    International audienc

    Thermal and mass balance in reactive thermal processing of nickel aluminide coatings on steel substrates

    No full text
    Nickel aluminide coatings were produced on steel substrates by reactive thermal processing of pre-plated precursor layers of nickel and aluminum using plasma arc as the heat source. Controlled rapid heating melted the outer aluminum layer, which then dissolved nickel to facilitate the nucleation and growth of a nickel aluminide. The resultant coating microstructures varied from a duplex or triplex structure, consisting of either NiAl3 and a eutectic; Ni2Al3, NiAl3 and a eutectic; to a fully monolithic Ni2Al3 structure, with the latter resulting at high heat input rates and/or low heat-source traverse rates. The temperature of the reaction layer was simulated for the experimental conditions by a numerical model based on Green\u27s function analysis, The nickel concentration at the liquid-solid interface just before any nickel aluminide nucleation was calculated by assuming local equilibrium interface conditions between the liquid layer and the fcc nickel-rich solution. The depth of nickel dissolution, which consequently determines the extent of nickel aluminide growth, was also predicted by the model. Numerical results of the nickel dissolution compared well with experimental observations

    Thermal and mass modeling of the laser-point sealing process in MEMS packaging

    No full text
    This article addresses the reactive thermal processing of locally heated intermetallic seals for micro-electro-mechanical systems (MEMS) packaging. Traditional post-packaging of MEMS involves high temperature brazing or soldering which results in degrading the quality of the thermally sensitive device. Focused laser heating of multilayer metals, therefore, serves as an attractive alternative due to a decrease in heat affected/degraded area. In this work a model is presented to decipher the dynamics of the thermal reaction and to serve as a tool for optimization and control of the multilayer sealing process. The analytical model is based on three-dimensional space- and time-dependent temperature and concentration Green\u27s fields and is solved numerically. The laser heat distribution is represented as a spatially varying Gaussian heat source to simulate the temperature and concentration evolution that occurs during the thermal process. The rapid heating induced by the laser source results in melting the sealing layer of lowest melting temperature, and then dissolves the layer in contact with the molten region to facilitate the nucleation and growth of an intermetallic compound. The simulation results show the model can successfully predict the temperature of the layers as well as the amount of barrier layer dissolution, which consequently determines the extent of the intermetallic compound growth in the bonding/sealing process. Copyright © 2004 by ASME
    corecore