14 research outputs found

    Neutron Scattering Studies of Phosphate Proton Conductors

    Get PDF
    Proton ceramic fuel cells operating in the intermediate temperature range of 300-500 °C offer potentially revolutionary advantages over existing fuel cells because expensive noble metal catalysts would not be needed, and in situ reforming of liquid bio-fuels such as ethanol or methanol would be possible.The chief obstacle facing intermediate fuel cells is the lack of a suitable electrolyte in the operating temperature range. A good electrolyte is thermally and chemically stable, inexpensive, environmentally friendly, and has a proton conductivity on the order of 10-2 S cm-1 [Siemens per centimeter] at 400 °C. Acceptor-doped lanthanum orthophosphate is an attractive candidate electrolyte as it meets all of the above requirements except that its proton conductivity is 1-2 orders of magnitude too low. One of the motivations for the research presented here is to understand the microscopic mechanisms of proton transport in phosphate materials in order to suggest future synthetic approaches leading to higher performance materials. Proton transfer in orthophosphates is known to involve both localized and long-range diffusion, but the energetically favored pathways and rate limiting steps of the proton transport are not well understood. We investigated acceptor-doped lanthanum orthophosphate by means of quasi-elastic neutron scattering (QENS), neutron powder diffraction, X-ray diffraction, and electrochemical impedance spectroscopy (EIS). The conductivity of the hydrated sample was determined in the temperature range 500-850 °C by EIS, and showed a clear proton-conductivity signature with activation energy of about 1.0 eV [electron volt]. The QENS experiment revealed a fast dynamical process below 500 °C that EIS did not observe. The fast proton diffusion’s activation energy is 0.09 eV in the temperature range from 150 °C to 500 °C. We determined the proton mean jump length, mean residence time, atomic displacement, and self-diffusion coefficient in order to characterize the proton dynamics. This work presents the first QENS investigation of proton dynamics in a rare earth phosphate. This work has also led to the development of a new sample cell environment, allowing QENS measurements to be performed under a humid or dry gas flow. Thus materials can be studied under conditions approximating those inside an operational fuel cell

    Vibronic coupling and band gap trends in CuGeO3 nanorods

    Get PDF
    We measured the optical response of CuGeO3 nanorods in order to reveal size effects on the electronic properties. The vibronically activated d-to-d color band excitations are activated by the 131 and 478 cm−1 phonons, with the relative contribution of the lower frequency O-Cu-O bending mode increasing with decreasing size until it dominates the process. We also uncover trends in the direct band gap, with the charge transfer edge hardening with decreasing size. These findings advance the understanding of size effects in low-dimensional copper oxides

    Spin–lattice and electron–phonon coupling in 3d/5d hybrid Sr3NiIrO6

    Get PDF
    Research at the University of Tennessee, Rutgers University, and University of Minnesota is supported by the National Science Foundation DMREF program (DMR-1629079, DMR-1629059, and DMR-1629260, respectively). The crystal growth was partially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016K1A4A4A01922028). We also appreciate funding from the U.S. Department of Energy, Basic Energy Sciences, contract DE-FG02-01ER45885 (Tennessee), “Science at 100 Tesla” (LANL), and “Topological phases of quantum matter and decoherence” (LANL). The NHMFL facility is supported by the U.S. National Science Foundation through Cooperative Grant DMR-1644779, the State of Florida, and the U.S. Department of Energy.While 3d-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5d systems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr3NiIrO6, for example, displays complex magnetism and ultra-high coercive fields—up to an incredible 55 T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first-principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin–lattice and electron–phonon mechanisms. Magneto-infrared spectroscopy reveals spin–lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir4+ excitations reveals vibronic coupling and extremely large crystal field parameters that lead to a t2g-derived low-spin state for Ir. These findings highlight the spin–charge–lattice entanglement in Sr3NiIrO6 and suggest that similar interactions may take place in other 3d/5d hybrids.Publisher PDFPeer reviewe

    Magnetoelectric Coupling through the Spin Flop Transition in Ni3TeO6

    Get PDF
    We combined high field optical spectroscopy and first principles calculations to analyze the electronic structure of Ni3TeO6 across the 53 K and 9 T magnetic transitions, both of which are accompanied by large changes in electric polarization. The color properties are sensitive to magnetic order due to field-induced changes in the crystal field environment, with those around Ni1 and Ni2 most affected. These findings advance the understanding of magnetoelectric coupling in materials in which magnetic 3d centers coexist with nonmagnetic heavy chalcogenide cations.clos

    Structure And Dynamics Investigations Of Sr/Ca-Doped Lapo4 Proton Conductors

    No full text
    Proton conductors loom out of the pool of candidate materials with great potential to boost hydrogen alternatives to fossil-based resources for energy. Acceptor-doped lanthanum orthophosphates are considered for solid oxide fuel cells (SOFCs) for their potential stability and conductivity at high temperature. By exploring the crystal and defect structure of x% Sr/Ca-doped LaPO4 with different nominal Sr/Ca concentrations (x = 0-10) with neutron powder diffraction (NPD) and X-ray powder diffraction (XRD), we confirm that Sr/Ca-doped LaPO4 can exist as self-supported structures at high temperatures during solid oxide fuel cell operation. Thermal stability, surface topography, and size distribution are also studied to better understand the proton conductivity for dry and wet compounds obtained at sintering temperatures ranging from 1200 to 1400 °C using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy (EIS). The results confirm that Sr-doped samples exhibit the highest proton conductivity of our samples and illustrate the impact of material design and versatile characterization schemes on the development of proton conductors with superior functionality

    A new apparatus design for high temperature (up to 950 °C) quasi-elastic neutron scattering in a controlled gaseous environment

    No full text
    A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments

    Charge and Bonding in CuGeO3 Nanorods

    Get PDF
    We combine infrared and Raman spectroscopies to investigate finite length scale effects in CuGeO3 nanorods. The infrared-active phonons display remarkably strong size dependence whereas the Raman-active features are, by comparison, nearly rigid. A splitting analysis of the Davydov pairs reveals complex changes in chemical bonding with rod length and temperature. Near the spin-Peierls transition, stronger intralayer bonding in the smallest rods indicates a more rigid lattice which helps to suppress the spin-Peierls transition. Taken together, these findings advance the understanding of size effects and collective phase transitions in low-dimensional oxides

    Charge and Bonding in CuGeO<sub>3</sub> Nanorods

    No full text
    We combine infrared and Raman spectroscopies to investigate finite length scale effects in CuGeO<sub>3</sub> nanorods. The infrared-active phonons display remarkably strong size dependence whereas the Raman-active features are, by comparison, nearly rigid. A splitting analysis of the Davydov pairs reveals complex changes in chemical bonding with rod length and temperature. Near the spin-Peierls transition, stronger intralayer bonding in the smallest rods indicates a more rigid lattice which helps to suppress the spin-Peierls transition. Taken together, these findings advance the understanding of size effects and collective phase transitions in low-dimensional oxides
    corecore