8 research outputs found

    Biotechnological applications of polymeric nanofiber platforms loaded with diverse bioactive materials

    Get PDF
    This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications

    Metformin lowers Glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation

    Get PDF
    The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element-binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase-independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate

    Identification of C-β-d-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies

    Get PDF
    Several C-β-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson (RP) and Spearman (RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(β-d-glucopyranosyl)-imidazoles and 2-aryl-4-(β-d-glucopyranosyl)-thiazoles were subsequently synthesized, and kinetics experiments against rabbit muscle GPb revealed new potent inhibitors with best Ki values in the low micromolar range (5c = 1.97 μM; 13b = 4.58 μM). Ten C-β-d-glucopyranosyl azoles were then tested ex vivo in mouse primary hepatocytes. Four of these (5a–c and 9d) demonstrated significant reduction of glucagon stimulated glycogenolysis (IC50 = 30–60 μM). Structural and predicted physicochemical properties associated with their effectiveness were analyzed with permeability related parameters identified as crucial factors. The most effective ligand series 5 contained an imidazole ring, and the calculated pKa (Epik: 6.2; Jaguar 5.5) for protonated imidazole suggests that cellular permeation through the neutral state is favored, while within the cell, there is predicted more favorable binding to GP in the protonated form

    Antidepressant-like Effects of Renin Inhibitor Aliskiren in an Inflammatory Mouse Model of Depression

    No full text
    Depression is considered a neuropsychic disease that has global prevalence and is associated with disability. The pathophysiology of depression is not well understood; however, emerging evidence has indicated that neuroinflammation could contribute to developing depression symptoms. One of the factors that have a role in the development of neuroinflammation is the renin–angiotensin system. Therefore, the goal of the current study is to determine the antidepressant-like effects of Aliskiren, a renin inhibitor, against lipopolysaccharide (LPS)-induced depressive-like behavior in mice, glial cell activation, and the upregulation of proinflammatory cytokines in the prefrontal cortex. For behavioral studies, the open field test (OFT), tail suspension test (TST), forced swim test (FST), and sucrose preference test (SPT) were used. Inflammatory markers were assessed using real-time polymerase chain reaction (RT-PCR). LPS administration (0.5 mg/kg, intraperitoneal injection (i.p.)) sufficiently reduced the number of crossings in OFT, whereas Aliskiren pretreatment (10 mg/kg, i.p.) attenuated the LPS effect for two hours after LPS injection. The treatments did not show effects on locomotor activity in OFT 24 h after LPS administration. LPS increased the immobility time in TST and FST or reduced sucrose consumption in SPT after 24 h. Aliskiren reversed the effects induced by LPS in TST, FST, and SPT. CD11 b mRNA, a microglial marker, GFAP mRNA, an astroglial marker, and proinflammatory cytokines genes (TNF-α, IL-1β, and IL-6) were upregulated in the prefrontal cortex in LPS exposed animals. However, Aliskiren reduced LPS-induced inflammatory genes in the prefrontal cortex. Hence, the outcomes conclude that Aliskiren prevents depressive illness associated with neuroinflammation in humans

    Biological Role of Zinc in Liver Cirrhosis: An Updated Review

    No full text
    Liver cirrhosis is a complication usually due to the consequence of persistent chronic liver disease. It is associated with different mechanisms, including hypoalbuminemia, impaired amino acid turnover, and micronutrient deficiencies. Consequently, cirrhotic patients can develop progressive complications like ascites, hepatic encephalopathy, and hepatocellular carcinoma. The liver is a vital organ that regulates the different metabolic pathways and transportation of trace elements. Zn is an indispensable micronutrient trace element involved in its crucial functions in cellular metabolic activity. Zn mediates its action by binding to a wide range of proteins; therefore, it imparts numerous biological effects, including cellular division, differentiation, and growth. It is also involved in critical processes for the biosynthesis of structural proteins and regulation of transcription factors and acts as a co-factor for the various enzymatic processes. As the liver is a significant regulator of Zn metabolism, its abnormalities lead to Zn deficiency, which has consequences on cellular, endocrine, immune, sensory, and skin dysfunctions. Conversely, Zn deficiency may modify the functions of hepatocytes and immune responses (acute phase protein production) in inflammatory liver diseases. This review has concisely stated the evolving indication of the critical role of Zn in biological processes and complications associated with liver cirrhosis pathogenesis due to Zn deficiency

    Effects of Thymoquinone Alone or in Combination with Losartan on the Cardiotoxicity Caused by Oxidative Stress and Inflammation in Hypercholesterolemia

    No full text
    Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue
    corecore