2 research outputs found

    A comparison of characteristics of periodic surface micro/nano structures generated via single laser beam direct writing and particle lens array parallel beam processing

    Get PDF
    Abstract Changing material surface micro/nanostructures using laser beam texturing is a valuable approach in wide applications such as control of cell/bacterial adhesion and proliferation, solar cells and optical metamaterials. Here, we report a comparison of the characteristics of surface micro/nanostructures produced using single beam laser direct writing and particle lens array parallel laser beam patterning. A Nd:YVO4 nanosecond pulsed laser at the wavelength of 532 nm was used in the laser direct writing method to texture the stainless steel surface submerged in water and in air with different scanning patterns. Changes in surface morphology, wettability, surface chemistry, and optical reflectivity were analyzed. In the particle lens array method, an excimer nanosecond laser at 248 nm wavelength was adopted to produce surface patterns on GeSbTe (GST) film coated on a polycarbonate substrate by splitting and focusing a single laser beam into millions of parallel breams. Single beam laser direct writing shows that the surface of high roughness and oxygen percentage content presented high wettability and low reflectivity characteristics. However, the controllability of the type of surface micro/nanopatterns is limited. The parallel laser beam processing using particle lens array allows rapid production of user designed periodic surface patterns at nanoscale overcoming the optical diffraction limit with a high degree of controllability. Controlling the uniformity of the particle lens array is a challenge

    The influence of picosecond laser generated periodic structures on bacterial behaviour

    Get PDF
    The formation of a biofilm is preceded by bacterial retention and proliferation on a surface. Biofilm development on surfaces can cause numerous issues in terms of fouling and bacterial transmission and contamination. The design and fabrication of surfaces that prevent bacterial retention and biofilm formation may provide a potential solution to reduce bacterial fouling of surfaces. An EdgeWave, Nd:YVO4 picosecond laser was used to generate two periodic surface topographies on 316L stainless steel surfaces with and without fluoroalkylsilane (FAS) treatment. These were characterised using Optical Laser Microscopy (OLM), Scanning Electron Microscopy (SEM), contact angle measurements, and Energy Dispersive X-ray Spectroscopy (EDX). The surface wettability and retention of Escherichia coli bacteria on the laser generated surfaces were analysed over one month. Without chemical treatment, and with increasing the time to one month, the results showed that the wettability of laser treated surfaces was decreased as was subsequent bacterial retention. However, the control surface recorded the lowest number of adhered bacteria. After reducing the surface tension, the number of bacteria retention was decreased on all surfaces and one of laser generated surfaces which presented higher contact angle and lower surface tension components (CA = 132°, ΔGiwi = −85.26, γs = 13.81, γsLW = 13.37, and γs− = 0.13) recorded the minimal number of bacteria retention. The results showed that reducing the surface tension played an important role which reduced bacterial fouling
    corecore