16 research outputs found

    The effect of aqueous and ethanolic extracts of Artemisia herba alba on human laryngeal carcinoma and murine mammary adenocarcinoma cell lines

    Get PDF
    The present study was carried out to evaluate the cytological effects of aqueous (AE) and ethanolic (EE) extracts of Artemisia herba alba on human laryngeal carcinoma (Hep-2) cell line and murine mammary adenocarcinoma (AMN-3) cell line in vitro. The cytological study performed simultaneously with cell growth assay. The results of study revealed concentration-dependent cytological changes like patchy growth inhibition, loss of confluent feature and cellular degeneration after exposure to the lowest concentrations (156.25 and 312.5 μg/ml). The early findings of cytolysis were seen after exposure to 625 μg/ml. While the highest concentrations (1250, 2500 and 5000 μg/ml) caused severe growth inhibition with marked cytolytic features including loss of cellular outlines, large numbers of dead cells and high content of cellular debris. In conclusion, the results of this study revealed the high cytological effect of Artemisia herba alba extracts on Hep-2 and AMN-3 cell lines in vitro

    Investigation of pure sliding and sliding/rolling contacts in a DLC/Cast iron system when lubricated in oils containing MoDTC-Type friction modifier

    Get PDF
    Diamond-like carbon (DLC)/cast iron (CI) systems have been widely investigated due to their important application in engine components such as cylinders, pistons and more specifically for the cam/follower interface. The pure sliding contact of the DLC/CI system has traditionally been the focus of research; consequently less is understood about sliding/rolling contact systems. In addition, the tribological and tribochemical characteristics of the Molybdenum Dialkyl Dithiocarbamate (MoDTC) as a lubricant additive in such sliding/rolling contacts are not fully understood. In this study, a Mini Traction Machine (MTM) was used to run the experiments using alloy steel balls coated with 15 atomic percent (at. %) hydrogenated DLC (a-C: 15H) rubbing against uncoated cast iron discs. Results showed that the sliding/rolling ratio affects friction, wear and tribochemistry in CI/DLC systems; pure sliding enhances MoDTC activation. MoDTC decomposes to form MoS₂, FeMoO₄ and not MoO₃. In addition, it was observed that MoS2/FeMoO₄ ratio depends on test conditions and affects to the friction performance

    Measuring tappet rotation in a valvetrain rig when lubricated in a fully formulated oil containing MoDTC-type friction modifier

    Get PDF
    In a direct acting valve train configuration, tappet rotation plays a key role in improving lubrication, reducing wear and friction. However, to the best of the authors' knowledge, no studies were found to investigate the rotation of tappet under the effect of different coatings, thicknesses of tappets and formulations with Molybdenum Dialkyl Dithiocarbamate (MoDTC) which has been recently reported to be detrimental to Diamond-Like Carbon (DLC) wear. In this work, a new technique of measuring tappet rotation has been developed. A giant magnetoresistance (GMR) sensor coupled with a split pole ferrite disk magnet was used. The sensor was installed very close to the tappet/bucket while the magnet was mounted into the underside of the tappet. Experiments were performed using standard production steel tappets coated with Mn-phosphate (MnPO4) and diamond-like carbon (DLC) coatings. In general, results showed that the tappet rotation is strongly dependant on oil formulation, clearance, speed/temperature, and surface roughness of the coating. MoDTC promoted the rotation of the tappet under both coatings. In addition, DLC inserts showed an increase in tappet rotation as compared to MnPO4 inserts. Nevertheless, regardless of the type of coating, the thickest tappets showed the highest rotation

    The effect of clearance between tappet insert and camlobe on the tribological and tribochemical performance of cam/follower surfaces

    Get PDF
    This paper examines the effect of tappet insert clearance on the tribological and tribochemical performance of the camlobe/follower tribopair when lubricated in a fully-formulated oil containing 1 wt% of Molybdenum Dialkyl Dithiocarbamate (MoDTC). Tests were performed on a Single Cam Rig (SCR), taken from 1.25 l FORD Zetec (SE) engine. White Light Interferometry and Talysurf contact profilometry were used to characterise the wear scar on the tappet inserts and camlobes respectively. In addition, Scanning Electron Microscopy (SEM) was used on both (i.e. camlobes and tappet inserts) for wear mechanisms assessment as well as to access the durability of coatings used on tappet inserts. Energy-Dispersive X-ray (EDX) and Raman spectroscopy analyses were also used to understand the tribochemical interactions between oil additives and the cam/follower interface. Results show that the chemistry of the tribofilm derived on camlobes and tappet inserts vary as a function of tappet insert clearance and cam profile. Also, regardless of the type of coating, the smaller clearance of tappet inserts exhibited higher friction and wear. Therefore, based on this work, the use of the thicker tappet insert would be inadvisable as this possibly can cause higher fuel consumption and inefficient performance of the intake/exhaust valves of the engine

    OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK

    Get PDF
    The OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a £2 M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling

    OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK

    Get PDF
    The OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a £2M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling
    corecore